FA info icon.svg Angle down icon.svg Source data
Type Paper
Year 2018
Language English
URL https://doi.org/10.1016/j.ohx.2018.e00026
Cite as Citation reference for the source document. Aubrey L. Woern, Joseph R. McCaslin, Adam M. Pringle, and Joshua M. Pearce. RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament. HardwareX 4C (2018) e00026 doi: https://doi.org/10.1016/j.ohx.2018.e00026 open access
Font Awesome map marker.svg Angle down icon.svg Location data
Loading map...
Location Michigan, USA

A recyclebot is an affordable waste plastic extruder that produces high-quality 3-D printing filament from post-consumer polymer waste. Using open-source hardware and techniques from the RepRap 3-D printer community, the recyclebot allows researchers to explore recycled materials for new applications in material science.

Source

  • Aubrey L. Woern, Joseph R. McCaslin, Adam M. Pringle, and Joshua M. Pearce. RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament. HardwareX 4C (2018) e00026 doi: https://doi.org/10.1016/j.ohx.2018.e00026 open access
    • Just the code: OSF
    • FreeCAD users: On the OSF link above the entire assembly is available in the STP file. Open it in FreeCAD and pick what part you would like to modify, export it as.stp, and you will be left with just the part you need. Once you have that, you can save it as just about anything.
    • Smaller FreeCAD 55 MB version - compliments of Marcin at Open Source Ecology - removed all the nuts and bolts and screws
    • Please note that all the instructions are in the HardwareX article above

Updates and Improvements[edit | edit source]

Open Source Ecology Improvements[edit | edit source]

Abstract

Recyclebotrep.png

In order to assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial quality 3-D printing filament. The device design takes advantage of both the open source hardware methodology and the paradigm developed by the open source self-replicating rapid prototyper (RepRap) 3-D printer community. Specifically, this paper describes the design, fabrication and operation of a RepRapable Recyclebot, which refers to the Recyclebot's ability to provide the filament needed to largely replicate the parts for the Recyclebot on any type of RepRap 3-D printer. The device costs less than $700 in mate rials and can be fabricated in about 24 h. Filament is produced at 0.4 kg/h using 0.24 kWh/kg with a diameter ±4.6%. Thus, filament can be manufactured from commercial pellets for <22% of commercial filament costs. In addition, it can fabricate recycled waste plastic into filament for 2.5 cents/kg, which is <1000X commercial filament costs. The system can fabricate filament from polymers with extrusion temperatures <250 °C and is thus capable of manufacturing custom filament over a wide range of thermopolymers and composites for material science studies of new materials and recyclability studies, as well as research on novel applications of fused filament based 3-D printing.

See also[edit source]

RepRapable Recyclebot and the Wild West of Recycling[edit source]

mqdefault.jpgYouTube_icon.svg
mqdefault.jpgYouTube_icon.svg

Recycling Technology[edit source]

Distributed Recycling LCA[edit source]

Literature Reviews[edit source]

Gigarecycle.png

Externals[edit source]

  • Economist article on U. of Washington's HDPE boat, Oprn3dp.me
  • https://ultimaker.com/en/resources/52444-ocean-plastic-community-project
  • Another possible solution - reusable containers [1]
  • Commercial https://dyzedesign.com/pulsar-pellet-extruder/
  • ---
  • Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., & Camargo, M. Polymer Recycling and Additive Manufacturing in an Open Source context: Optimization of processes and methods. [2]
  • Investigating Material Degradation through the Recycling of PLA in Additively Manufactured Parts
  • Mohammed, M.I., Das, A., Gomez-Kervin, E., Wilson, D. and Gibson, I., EcoPrinting: Investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing.
  • Kariz, M., Sernek, M., Obućina, M. and Kuzman, M.K., 2017. Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications. [3]
  • Kaynak, B., Spoerk, M., Shirole, A., Ziegler, W. and Sapkota, J., 2018. Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing. Macromolecular Materials and Engineering, p.1800037. [4]
  • O. Martikka et al., "Mechanical Properties of 3D-Printed Wood-Plastic Composites", Key Engineering Materials, Vol. 777, pp. 499-507, 2018 [5]
  • Yang, T.C., 2018. Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers, 10(9), p.976. [6]
  • Romani, A., Rognoli, V., & Levi, M. (2021). Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability, 13(13), 7269. https://www.mdpi.com/2071-1050/13/13/7269/pdf

Literature Reviews[edit | edit source]

Powerrecyclebot.png

In the News[edit | edit source]

Cookies help us deliver our services. By using our services, you agree to our use of cookies.