Osgran.png
Project data
Authors Arvind Ravindran
Sean Scsavnicki
Walker Nelson
Peter Gorecki
Jacob Franz
Shane Oberloier
Theresa K. Meyer
Andrew R. Barnard
Joshua M. Pearce
Status Designed
Modelled
Prototyped
Verified
Verified by MOST
re:3D
Links https://www.academia.edu/40616354/Open_Source_Waste_Plastic_Granulator&#124
https://www.mdpi.com/2227-7080/7/4/74&#124
Export to Open Know How Manifest
Device data
Design files https://osf.io/a2tk9/ OSF.io
Location data
Loading map...
Location Michigan, USA

Sunhusky.png Michigan Tech's Open Sustainability Technology Lab.

Contact Dr. Joshua Pearce
MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, YouTube

Create-Joshua-Pearce.png


Pearce Publications: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education


In order to accelerate deployment of distributed recycling by providing low-cost feed stocks of granulated post-consumer waste plastic, this study analyzes an open source waste plastic granulator system. It is designed, built, and tested for its ability to convert post-consumer waste, 3D printed products and waste into polymer feedstock for recyclebots of fused particle/granule printers. The technical specifications of the device are quantified in terms of power consumption (380 to 404 W for PET and PLA, respectively) and particle size distribution. The open source device can be fabricated for less than $2000 USD in materials. The experimentally measured power use is only a minor contribution to the overall embodied energy of distributed recycling of waste plastic. The resultant plastic particle size distributions were found to be appropriate for use in both recyclebots and direct material extrusion 3D printers. Simple retrofits are shown to reduce sound levels during operation by 4dB-5dB for the vacuum. These results indicate that the open source waste plastic granulator is an appropriate technology for community, library, maker space, fab lab, or small business–based distributed recycling.

Source

Keywords[edit | edit source]

Circular economy; Distributed recycling; Energy conservation; Polymer recycling; Sustainable development; distributed manufacturing; life cycle analysis; recycling; recyclebot; 3-D printing; Open source hardware; Open hardware; RepRap; Recycling; Polymers; Plastic; Recyclebot; Waste plastic; Composites; Polymer composites; Extruder; Upcycle; Materials science;additive manufacturing; distributed manufacturing; open-source; waste plastic; extruder; upcycle; granulator; shredder; fab lab; open-source; polymers; recycling; waste plastic; upcycle; circular economy

See also[edit source]

RepRapable Recyclebot and the Wild West of Recycling

Recycling Technology[edit source]

Distributed Recycling LCA[edit source]

Literature Reviews[edit source]

Gigarecycle.png

Externals[edit source]


  • Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., & Camargo, M. Polymer Recycling and Additive Manufacturing in an Open Source context: Optimization of processes and methods. [2]
  • Investigating Material Degradation through the Recycling of PLA in Additively Manufactured Parts [3]
  • Mohammed, M.I., Das, A., Gomez-Kervin, E., Wilson, D. and Gibson, I., EcoPrinting: Investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing. [4]
  • Kariz, M., Sernek, M., Obućina, M. and Kuzman, M.K., 2017. Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications. [5]
  • Kaynak, B., Spoerk, M., Shirole, A., Ziegler, W. and Sapkota, J., 2018. Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing. Macromolecular Materials and Engineering, p.1800037. [6]
  • O. Martikka et al., "Mechanical Properties of 3D-Printed Wood-Plastic Composites", Key Engineering Materials, Vol. 777, pp. 499-507, 2018 [7]
  • Yang, T.C., 2018. Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers, 10(9), p.976. [8]
  • Romani, A., Rognoli, V., & Levi, M. (2021). Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability, 13(13), 7269. https://www.mdpi.com/2071-1050/13/13/7269/pdf