Distributed recycling of post-consumer plastic waste in rural areas

From Appropedia
Jump to navigation Jump to search

Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Currently looking for PhD or MSC student interested in solar energy policy- apply now!
Contact Dr. Joshua Pearce - Apply here

MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, Instagram, YouTube

OSL.jpg


This page is part of an international project to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testingRepRap printing protocol: MOST‎ Lessons learnedMOST RepRap BuildMOST Prusa BuildMOST HS RepRap buildRepRap Print Server


Make me: Want to build a MOST RepRap? - Start here!Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer Humanitarian Crisis Response 3-D Printer



  • M. Kreiger, G. C. Anzalone, M. L. Mulder, A. Glover and J. M Pearce (2013). Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas. MRS Online Proceedings Library, 1492, mrsf12-1492-g04-06 doi:10.1557/opl.2013.258. open access

Abstract[edit]

Recyclebot-process.png

Although the environmental benefits of recycling plastics are well established and most geographic locations within the U.S. offer some plastic recycling, recycling rates are often low. Low recycling rates are often observed in conventional centralized recycling plants due to the challenge of collection and transportation for high-volume low-weight polymers. The recycling rates decline further when low population density, rural and relatively isolated communities are investigated because of the distance to recycling centers makes recycling difficult and both economically and energetically inefficient. The recent development of a class of open source hardware tools (e.g. RecycleBots) able to convert post-consumer plastic waste to polymer filament for 3-D printing offer a means to increase recycling rates by enabling distributed recycling. In addition, to reducing the amount of plastic disposed of in landfills, distributed recycling may also provide low-income families a means to supplement their income with domestic production of small plastic goods. This study investigates the environmental impacts of polymer recycling. A life-cycle analysis (LCA) for centralized plastic recycling is compared to the implementation of distributed recycling in rural areas. Environmental impact of both recycling scenarios is quantified in terms of energy use per unit mass of recycled plastic. A sensitivity analysis is used to determine the environmental impacts of both systems as a function of distance to recycling centers. The results of this LCA study indicate that distributed recycling of HDPE for rural regions is energetically favorable to either using virgin resin or conventional recycling processes. This study indicates that the technical progress in solar photovoltaic devices, open-source 3-D printing and polymer filament extrusion have made distributed polymer recycling and upcycling technically viable.

Key Findings[edit]

Table 1: Energy Demand and Reduction for Various Recycling Cases

Case Energy Demand (MJ/kg HDPE) Percent Reduction (Δ%) for Distributed Recycling c
Distributed Recycling:

Insulated RecycleBot

8.74 --
Virgin Resina 79.7 89
Centralized Recyclingb – Rural: Copper Harbor (monthly) 28.4 69
Centralized Recyclingb – Rural: Copper Harbor (bi-weekly) 48.9 82
Notes: a. [26], b. Estimate based on [24], c. Percent reduction = (Central-Distributed)/Central*100


See Also[edit]

RepRapable Recyclebot and the Wild West of Recycling

Recycling Technology[edit]

Distributed Recycling LCA[edit]

Literature Reviews[edit]

Gigarecycle.png

Externals[edit]


  • Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., & Camargo, M. Polymer Recycling and Additive Manufacturing in an Open Source context: Optimization of processes and methods. [2]
  • Investigating Material Degradation through the Recycling of PLA in Additively Manufactured Parts [3]
  • Mohammed, M.I., Das, A., Gomez-Kervin, E., Wilson, D. and Gibson, I., EcoPrinting: Investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing. [4]
  • Kariz, M., Sernek, M., Obućina, M. and Kuzman, M.K., 2017. Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications. [5]
  • Kaynak, B., Spoerk, M., Shirole, A., Ziegler, W. and Sapkota, J., 2018. Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing. Macromolecular Materials and Engineering, p.1800037. [6]
  • O. Martikka et al., "Mechanical Properties of 3D-Printed Wood-Plastic Composites", Key Engineering Materials, Vol. 777, pp. 499-507, 2018 [7]
  • Yang, T.C., 2018. Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers, 10(9), p.976. [8]

News[edit]

Gigabotxonfox.png
  1. Industrial 3D Printing Goes Skateboarding MTU News 14k
    1. Science Daily 2.9k
    2. Eureka Alert 16.4k
    3. TechXplore 76.3k
    4. Nanowerk 78.7k
    5. ECN Magazine 92.6k
    6. Labroots 110k
    7. Newswise 131k
    8. Zwoops 132k
    9. Space Daily 161k
    10. Bioengineer
    11. 3D Printing Progress
    12. Science Technology and Research News
    13. E Peak
    14. I Connect 007
    15. Live Science
  2. 再生塑料经3D技术加持变身运动用品 Finance East Money (China) 1056
    1. Info.21CP 45k
  3. Green Fab Lab: Using the Fab Lab To 3D Print New Things From Recycled Plastics 3DPrint 44k
  4. Michigan Tech scientists write recommendations for greener 3D printing 3D Printing Industry 71.9k
  5. Funding Makerspaces With 3D Printing? Fabaloo 114k
  6. 3D Printer Turns Recycled Plastic into Sporting Goods Design News 142k
    1. Flipboard 4.2k
    2. Quartz Share 2.8k
  7. Case Study: 3D Printer Using Fused Granular Fabrication – Cheap & Economic Efficiency 3D Printing 143k
  8. "Gigabot X" 3-D printer helps find new uses for recycled plastic Tv6 Fox UP 146k
  9. Engineers 3D Print Skateboard Using Waste Plastic - Industrial Equipment News 224k
  10. Gigabot X Prints from Waste Plastics Digital Engineering 246k
  11. 种经济环保的新型3D打印机 Materials and Testing (China) 254k
  12. Researchers Utilize Fab Lab To 3D Print Using Recycled Plastic - Manufacturing Talk Radio
  13. Tech: Industrial 3D printing goes skateboarding — (Report) Tunisiesoir
  14. Industrial 3D printing could soon be used for outdoor sporting goods The Edge
  15. How 3D Printing is Making its Way Into Outdoor Sporting Goods EE Design IT
  16. DSM and CEAD to develop new materials and applications for pelletized 3D printing 3DPrinting Industry 73k
  17. Industrial 3D printer prints directly from recycled shredded waste Design Fax
  18. China’s ban on plastics and its effect on the U.S. economy - American Recycler