FA info icon.svg Angle down icon.svg Source data
Type Paper
Cite as Citation reference for the source document. Z. Du, D. Denkenberger, J.M. Pearce, Solar photovoltaic powered on-site ammonia production for nitrogen fertilization, Solar Energy, 122, 562-568 (2015). http://dx.doi.org/10.1016/j.solener.2015.09.035 open access

Ammonia synthesis is the most important step for nitrogen-fertilizer production and consumes approximately 1% of the world’s energy production and energy-related greenhouse gas emissions. In addition to the concomitant emissions caused by ammonia and nitrogen fertilizer synthesis, centrally produced fertilizer that must be distributed to farms also harms the environment because of the embodied energy of transportation. An environmentally-optimal nitrogen fertilizer system would be distributed on farms themselves using only renewable inputs. Recent developments in solar photovoltaic technology and subsystems for ammonia production have made non-organic on-site ammonia production physically possible. This study provides a technical evaluation of the process for on-site nitrogen-fertilization of corn using solar photovoltaic electricity as the energy input. The system consists of a water electrolysis system to generate hydrogen and a membrane system to generate nitrogen needed as material inputs. Total power consumption for syngas preparation to generate a unit of ammonia is calculated. System total energy consumption is calculated while compensating syngas preparation with heat recovery. Five case-study locations are evaluated to determine their suggested nitrogen fertilizer addition (N-rate) for corn growth and the energy consumption for suggested N-rate is calculated. The System Advisor Model (SAM) is then used to simulate the PV system output for those five locations. Finally, the PV land use required as a fraction of the corn field area is determined. The results indicate that because PV is so much more efficient at solar energy conversion than organic methods, even the worst case evaluated in Indiana requires less than 1% of the corn field converted to a PV system to provide enough energy to generate sufficient amounts of ammonia for fertilizer for the remaining corn. The system was modeled to provide ammonia to fertilize for corn fields larger than 1079 acres with the worst soil conditions, the area of which applies to more than half of cropland in the U.S. in 2011. As the finiteness and emissions of fossil fuel production of nitrogen become more important, this renewable system should become economical and future investigations into its overall viability are warranted.

Highlights[edit | edit source]

  • Environmental nitrogen fertilizer system is distributed using renewable energy.
  • Energy consumption to generate N using water electrolyzer has been calculated.
  • Energy consumption to provide N fertilizer for unit corn field has been calculated.
  • Land required for photovoltaic fertilizer production for corn has been simulated.
  • Results show <1% of the corn field converted to a PV system for N-fertilizer energy.

See also[edit | edit source]

Services provided by agrivoltaics are: renewable electricity generation, decreased green-house gas emissions, reduced climate change, increased crop yield, plant protection from excess solar energy, plant protection from inclement weather such as hail, water conservation, agricultural employment, local food, improved health from pollution reduction increased revenue for farmers, a hedge against inflation, the potential to produce nitrogen fertilizer on farm, on farm production of renewable fuels such as anhydrous ammonia or hydrogen, and electricity for EV charging for on- or off-farm use.
Agrivoltaics Canada - What is Agrivoltaics

In the News[edit source]

FA info icon.svg Angle down icon.svg Page data
Authors Joshua M. Pearce
License CC-BY-SA-3.0
Language English (en)
Related 0 subpages, 32 pages link here
Impact 621 page views
Created November 10, 2015 by Joshua M. Pearce
Modified April 16, 2024 by Felipe Schenone
Cookies help us deliver our services. By using our services, you agree to our use of cookies.