Rabbitlca Graphical Abstract 5.jpg
Project data
Authors Joshua M. Pearce
Completed 2021
Instance of Photovoltaic
Export to Open Know How Manifest

Agrivoltaic systems, which deliberately maximize the utility of a single parcel of land for both solar photovoltaic (PV) electricity production and agriculture, have been demonstrated as a viable technology that can ameliorate competing land uses and meet growing energy and food demands efficiently. The goal of this study is to assess the environmental impacts of a novel pasture-based agrivoltaic concept: co-farming rabbits and solar PV. A life cycle assessment (LCA) quantified the impacts of 1) the integrated agrivoltaic concept in comparison to conventional practices including 2) separate rabbit farming and PV production and 3) separate rabbit farming and conventional electricity production. The impact assessment methods employed to determine the environmental impacts were IPCC 2013 global warming potential 100a V1.03 and fossil energy demand V1.11. The results indicate that the pasture-based agrivoltaic system produces the least amount of greenhouse gas emissions (3.8 million kg CO₂ equivalent) and demands the least amount of fossil energy (46 million MJ) per functional unit of cumulative MWh output of electricity and cumulative kg of meat over 30 years in comparison to the two other scenarios under study. The pasture-based agrivoltaic system features a dual synergy that consequently produces 69.3 ​% less emissions and demands 82.9 ​% less fossil energy compared to non-integrated production. The potential for agrivoltaic systems to significantly reduce environmental impacts revealed by this LCA demonstrates that integrated solar and pasture-based agricultural systems are superior to conventional practices in terms of their comparatively lower emission and energy intensity. These findings provide empirical support for increased agrivoltaic system development more broadly.

Source

  • Alexis S. Pascaris, Rob Handler, Chelsea Schelly, and Joshua M. Pearce. Life cycle assessment of pasture-based agrivoltaic systems: Emissions and energy use of integrated rabbit production. Cleaner and Responsible Consumption (2021): 100030. https://doi.org/10.1016/j.clrc.2021.100030

academia


Tctscover.png Create-Joshua-Pearce.png Pearce Publications
FAST
MOST
QAS
Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education

OSL.jpg Feedingeveryone.jpg


Highlights[edit | edit source]

  • Life cycle assessment of pasture-based agrivoltaic system limited to emissions and fossil energy.
  • Comparison between 3 scenarios show agrivoltaics is superior to conventional practice.
  • CO₂ emissions and fossil energy demand were quantified for rabbit agrivoltaic system.
  • Integrated production results in 69.3 ​% less emissions and 82.9 ​% less energy demand.

Rabbitlca Graphical Abstract 5.jpg

See also[edit | edit source]