Gatiltwood.png
FA info icon.svg Angle down icon.svg Source data
Type Paper
Year 2022
Location London, ON, Canada
Cite as Citation reference for the source document. Vandewetering, N.; Hayibo, K.S.; Pearce, J.M. Open-Source Design and Economics of Manual Variable-Tilt Angle DIY Wood-Based Solar Photovoltaic Racking System. Designs 2022, 6, 54. https://doi.org/10.3390/designs6030054 academia open access
FA info icon.svg Angle down icon.svg Project data
Status Designed
Modelled
Prototyped
Verified
Verified by FAST
Made Yes
Replicated No
OKH Manifest Download

Fixed-tilt mechanical racking, consisting of proprietary aluminum extrusions, can dominate the capital costs of small-scale solar photovoltaic (PV) systems. Recent design research has shown that wood-racking can decrease the capital costs of small systems by more than 75% in North America. To determine if wood racking provides enough savings to enable labor to be exchanged profitably for higher solar electric output, this article develops a novel variable tilt angle open-source wood-based do-it-yourself (DIY) PV rack that can be built and adjusted at exceptionally low costs. A detailed levelized cost of electricity (LCOE) production analysis is performed after the optimal monthly tilt angles are determined for a range of latitudes. The results show the racking systems with an optimal variable seasonal tilt angle have the best lifetime energy production, with 5.2% more energy generated compared to the fixed-tilt system (or 4.8% more energy, if limited to a maximum tilt angle of 60°). Both fixed and variable wooden racking systems show similar LCOE, which is only 29% of the LCOE of commercial metal racking. The results of this study indicate that the novel variable tilt rack, whether used as a small-scale DIY project or scaled up to fulfill larger energy demands, provides both the lowest cost option even when modest labor costs are included and also may provide specific advantages for applications such as agrivoltaics. This design has been certified by OSHWA with CERN-OHL-S-2.0 licenses.

Gatiltwood.png

Keywords[edit | edit source]

Sustainable development; Open-source; Photovoltaic; racking; solar energy; biomaterials; wood; photovoltaic; mechanical design; balance of systems; renewable energy; open source; do-it-yourself

See also[edit | edit source]

Open Source Photovoltaic Racking Approaches[edit source]

mqdefault.jpgYouTube_icon.svg


Cookies help us deliver our services. By using our services, you agree to our use of cookies.