Jump to content

Design and Implementation of 3-D Printed Radiation Shields for Environmental Sensors

From Appropedia
3-D Printed Radiation Shields for Environmental Sensors Test Setup
Source data
Type Paper
Language English
Cite as Citation reference for the source document. J.S. Botero-Valencia, M. Mejia-Herrera, Joshua M. Pearce, Design and Implementation of 3-D Printed Radiation Shields for Environmental Sensors, HardwareX, 2022, e00267, https://doi.org/10.1016/j.ohx.2022.e00267. OA, Academia OA
Project data
Type 3D Printing
Authors Joshua M. Pearce
Location London, Ontario, Canada
Status Designed
Modelled
Prototyped
Verified
Years 2022
Made Yes
Replicated No
Uses 3D Printing
OKH Manifest Download

The measurement of outdoor environmental and climatic variables is needed for many applications such as precision agriculture, environmental pollution monitoring, and the study of ecosystems. Some sensors deployed for these purposes such as temperature, relative humidity, atmospheric pressure, and carbon dioxide sensors require protection from climate factors to avoid bias. Radiation shields hold and protect sensors to avoid this bias, but commercial systems are limited, often expensive, and difficult to implement in low-cost contexts or large deployments for collaborative sensing. To overcome these challenges, this work presents an open source, easily adapted and customized design of a radiation shield. The device can be fabricated with inexpensive off-the-shelf parts and 3-D printed components and can be adapted to protect and isolate different types of sensors. Two material approaches are tested here: polylactic acid (PLA), the most common 3-D printing filament, and acrylonitrile styrene acrylate (ASA), which is known to offer better resistance against UV radiation, greater hardness, and generally higher resistance to degradation. To validate the designs, the two prototypes were installed on a custom outdoor meteorological system and temperature and humidity measurements were made in several locations for one month and compared against a proprietary system and a system with no shield. The 3-D printed materials were also both tested multiple times for one month for UV stability of their mechanical properties, their optical transmission and deformation under outdoor high-heat conditions. The results showed that ASA is the preferred material for this design and that the open source radiation shield could match the performance of proprietary systems. The open source system can be constructed for about nine US dollars, which enables mass development of flexible weather stations for monitoring needed in smart agriculture.

  • Full source Available online: https://doi.org/10.17605/OSF.IO/XE49Y
  • Subject areas: Engineering, Instrumentation, Internet of things
  • Hardware type: Measuring physical properties and in-lab sensors,Field measurements and sensors, Electrical engineering and computer science
  • Open source license: GNU GPL v3 for documents and CERN OHL v2 for hardware
  • Cost of hardware: 5.70 - 9.00 USD

Keywords[edit | edit source]

Climatic variables; environmental variables; Internet of Things (IoT); low cost; radiation shield; 3-D printing; open hardware; environmental monitoring; sensing; environmental sensing; additive manufacturing; smart agriculture

See also[edit | edit source]

The Western Innovation for Renewable Energy (WIRED) system is currently under construction to test out new open source methods to reduce PV systems costs and enable novel forms of agrivoltaics including the world's first agrivoltaic agrotunnel.

mqdefault.jpgYouTube_icon.svg
Services provided by agrivoltaics are: renewable electricity generation, decreased green-house gas emissions, reduced climate change, increased crop yield, plant protection from excess solar energy, plant protection from inclement weather such as hail, water conservation, agricultural employment, local food, improved health from pollution reduction increased revenue for farmers, a hedge against inflation, the potential to produce nitrogen fertilizer on farm, on farm production of renewable fuels such as anhydrous ammonia or hydrogen, and electricity for EV charging for on- or off-farm use.
Agrivoltaics Canada - What is Agrivoltaics
mqdefault.jpgYouTube_icon.svg
mqdefault.jpgYouTube_icon.svg

In the News[edit source]

  1. How agrivoltaics is marrying food production with green energy in Alberta CBC
    1. Solar burgers: How agrivoltaics is marrying food production with green energy Western Investor
    2. Comment l’agrivoltaïque associe production alimentaire et énergie verte Les Affaires
    3. Solar burgers: How agrivoltaics is marrying food production with green energy MSN
    4. Comment l'agrivoltaïque associe production alimentaire et énergie verte Le ChoseLaval
    5. CastaNet
    6. The Winnipeg Free Press
    7. Head Topics
    8. Morning Ag Clips
    9. Les Affaires
    10. LaTerre
    11. RD News
    12. Lethbridge News
    13. Famrs.com
    14. Enbeuce
  2. Agrivoltaics: solar energy + better crops Climate and Nature
  3. Why solar power and farmers’ fields could be the perfect combination TVO
  4. Solar farms and sheep show the makings of a clean energy classic duo Business Renewables
  5. Agrivoltaics charge up St. Albert-area farms St Albert Gazette
  6. Sheep, solar and crops. How some Alberta farms are creating ideal growing conditions Western Wheel
  7. Sheep, solar and crops. How some Alberta farms create ideal growing conditions Voxpopuli
  8. 3D printed clamps for front-surface PV mounting on wood racking PV Magazine
  9. Harvesting the Sun to Grow in the Shade Garden Culture Magazine
  10. What crops fit with vertical agrivoltaics? PV Magazine
  11. Agrivoltaics – Keeping the farm in the solar farm Green Energy Futures
  12. Booming solar industry has a growing appetite for weed-chomping crews CBC
    1. La floreciente industria solar tiene un creciente apetito por equipos de devoradores de maleza Espanol news
    2. Des cochons à l’ombre des panneaux solaires, l’agrivoltaïsme gagne en popularité Radio Canada
    3. Pigs in the shade of solar panels, agrivoltaics gains popularity Euro Day France
    4. Des porcs à l’ombre des panneaux solaires, l’agrivoltaïque gagne en popularité News Day France
    5. ICI Radio
    6. The Weather Network
  13. Agrowoltaika zyskuje na wartości. Panele słoneczne na polu nie przekreślają upraw Business Insider Poland
  14. Kanada/ Coraz popularniejsza agrowoltaika: rolnictwo i produkcja energii w jednym Deon Pl
  15. Tu zboże, tam fotowoltaika. Rolnicy produkują i żywność i energię na jednym polu Bankier PL
  16. Kanada: coraz popularniejsza agrowoltaika: rolnictwo i produkcja energii w jednym MSN PL
  17. Agrowoltaika podbija świat (Agrovoltaics is conquering the world ) Warzywnichtow Polish
  18. Coraz popularniejsza agrowoltaika - rolnictwo i produkcja energii w jednym Agro Polska
  19. Agriculture and Energy Future - Agrivoltaics Agritecture
  20. MBA students examine a solar farm’s benefits for critical issues case competition Ivey
  21. Ontario solar curbs rankle expert BNN Bloomberg
  22. Kanada: coraz popularniejsza agrowoltaika: rolnictwo i produkcja energii w jednym MSN Poland
  23. Agrivoltaics: Harvesting the sun to benefit farmers, crops, and livestock Shareable
Cookies help us deliver our services. By using our services, you agree to our use of cookies.