This page is part of an international project to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testingRepRap printing protocol: MOST Lessons learnedMOST RepRap BuildMOST Prusa BuildMOST HS RepRap buildRepRap Print Server


Make me: Want to build a MOST RepRap? - Start here!Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer Humanitarian Crisis Response 3-D Printer



Source

Abstract
The recent development of the RepRap, an open-source self-replicating rapid prototyper, has made 3-D polymer-based printers readily available to the public at low costs (<$500). The resultant uptake of 3-D printing technology enables for the first time mass-scale distributed digital manufacturing. RepRap variants currently fabricate objects primarily from acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), which have melting temperatures low enough to use in melt extrusion outside of a dedicated facility, while high enough for prints to retain their shape at average use temperatures. In order for RepRap printed parts to be useful for engineering applications the mechanical properties of printed parts must be known. This study quantifies the basic tensile strength and elastic modulus of printed components using realistic environmental conditions for standard users of a selection of open-source 3-D printers. The results find average tensile strengths of 28.5 MPa for ABS and 56.6 MPa for PLA with average elastic moduli of 1807 MPa for ABS and 3368 MPa for PLA. It is clear from these results that parts printed from tuned, low-cost, open-source RepRap 3-D printers can be considered as mechanically functional in tensile applications as those from commercial vendors.

Highlights[edit | edit source]

  • Open-source self-replicating rapid prototyper, RepRaps are 3-D printers.
  • Low costs enable mass-scale distributed digital manufacturing in ABS, PLA.
  • Average tensile strengths of 28.5 MPa for ABS and 56.6 MPa for PLA.
  • Average elastic moduli of 1807 MPA for ABS and 3368 MPa for PLA.
  • RepRaps are as mechanically functional as commercial 3-D printers

Major Findings[edit | edit source]

Using tensile specimen here:http://www.thingiverse.com/thing:28987

RepRaptensile.png

See also[edit | edit source]

Media[edit | edit source]

Page data
Published 2014
License CC-BY-SA-4.0
Impact Number of views to this page and its redirects. Updated once a month. Views by admins and bots are not counted. Multiple views during the same session are counted as one. 618
Issues Automatically detected page issues. Click on them to find out more. They may take some minutes to disappear after you fix them. No main image
Cookies help us deliver our services. By using our services, you agree to our use of cookies.