3dtruss.png
FA info icon.svg Angle down icon.svg Source data
Type Paper
Cite as Citation reference for the source document. Lyes Azzouz, Yong Chen, Mauro Zarrelli, Joshua M.Pearce, Leslie Mitchell, Guogang Ren, Marzio Grasso. Mechanical properties of 3-D printed truss-like lattice biopolymer non-stochastic structures for sandwich panels with natural fibre composite skins, Composite Structures 213:220-230 (2019).https://doi.org/10.1016/j.compstruct.2019.01.103 open access

A full mechanical characterisation of three types of 3-D printed lattice cores was performed to evaluate the feasibility of using additive manufacturing (AM) of lightweight polymer-based sandwich panels for structural applications. Effects of the shape of three selected lattice structures on the compression, shear and bending strength has been experimentally investigated. The specimens tested were manufactured with an open source fused filament fabrication-based 3-D printer. These sandwich structures considered had skins made of polypropylene (PP)-flax bonded to the polylactic acid (PLA) lattice structure core using bi-component epoxy adhesive. The PP-flax and the PLA core structures were tested separately as well as bonded together to evaluate the structural performance as sandwich panels. The compression tests were carried out to assess the in-plane and out of plane stiffness and strength by selecting a representative number of cells. Shear band and plastic hinges were observed during the in-plane tests. The shear and three-point bending tests were performed according to the standard to ensure repeatability. The work has provided an insight into the failure modes of the different shapes, and the force-displacement history curves were linked to the progressive failure mechanisms experienced by the structures. Overall, the results of the three truss-like lattice biopolymer non-stochastic structures investigated have indicated that they are well suited to be used for potential impact applications because of their high-shear and out of the plane compression strength. These results demonstrate the feasibility of AM technology in manufacturing of lightweight polymer-based sandwich panels for potential structural uses.

Keywords[edit | edit source]

	 3D printing; Mechanical testing; Polylactic acid; RepRap; Fused filament fabrication; FDM; Natural fibre ; Lattice structures; PLA; Natural fibre composites; Sandwich structure; Stochastic structures; Biopolymers

See also[edit | edit source]

Future

  1. Toward improvement of the properties of parts manufactured by FFF (Fused Filament Fabrication) through understanding the influence of temperature and rheological behaviour on the coalescence phenomenon http://aip.scitation.org/doi/pdf/10.1063/1.5008034
  2. ANALYSIS OF EFFECT OF INTERNAL STRUCTURES ON TENSILE STRENGTH OF THE FDM PARTS http://acadpubl.eu/jsi/2017-115-6-7/articles/6/16.pdf
FA info icon.svg Angle down icon.svg Page data
Authors Joshua M. Pearce
License CC-BY-SA-3.0
Language English (en)
Related 0 subpages, 15 pages link here
Impact 143 page views (more)
Created February 1, 2019 by Joshua M. Pearce
Last modified February 23, 2024 by Maintenance script
Cookies help us deliver our services. By using our services, you agree to our use of cookies.