Get our free book (in Spanish or English) on rainwater now - To Catch the Rain.

Anisotropic mechanical property variance between ASTM D638-14 type I and type IV fused filament fabricated specimens

From Appropedia
Jump to: navigation, search

Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Currently looking for PhD or MSC student interested in solar energy policy- apply now!
Contact Dr. Joshua Pearce - Apply here

MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, Instagram, YouTube


Pearce Publications: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education




The open source introduction of fused filament fabrication (FFF) enables distributed manufacturing of consumer products. However, with a wide range of low-cost FFF 3-D printers and settings possible, there is a lack of information on the variability in printed mechanical properties. This paper utilizes a large pool of 47 user-assembled 3-D printers to quantify the mechanical property variations of ultimate tensile strength (UTS) and yield strength of FFF printed components using ASTM D638-14 horizontally-oriented Type I and IV geometries for poly lactic acid (PLA). The results indicate that utilizing Type IV tensile test piece geometry may overestimate the UTS relative to the Type I. Furthermore, anisotropic mechanical property variances were quantified for Type IV specimens (vertical and horizontal orientations). Vertical tensile specimens had an ultimate tensile strength 47.9% less than horizontal. Finally, the abundant supply of PLA 3-D prints suggest open-source printers assembled by individual operators can produce quality plastic components although the mechanical performance of the given part can vary dramatically based on the operator selection of printing parameters that provide a visually acceptable part.


  • Wide range of FFF 3-D printers and settings create variability in printed mechanical properties.
  • Here a large pool of user-assembled 3-D printers to quantify ultimate tensile strength (UTS).
  • And yield strength using ASTM D638-14 horizontally-oriented Type I and IV geometries.
  • Tensile strengths of 61.6 and 60.9 MPa were observed for Type IV and Type I, respectively.
  • Check: Tensile component geometry is equivalent to the desired printed component geometry.


   3D printing; Mechanical testing; Polylactic acid; RepRap; Fused filament fabrication; FDM

See Also[edit]


  1. Toward improvement of the properties of parts manufactured by FFF (Fused Filament Fabrication) through understanding the influence of temperature and rheological behaviour on the coalescence phenomenon

This page is part of an international project to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testingRepRap printing protocol: MOST‎ Lessons learnedMOST RepRap BuildMOST Prusa BuildMOST HS RepRap buildRepRap Print Server

Make me: Want to build a MOST RepRap? - Start here!Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer Humanitarian Crisis Response 3-D Printer