Partially RepRapable Automated Open Source Bag Valve Mask-based Ventilator

From Appropedia
Jump to navigation Jump to search

Sunhusky.png Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing and recycling.
Contact Dr. Joshua Pearce - Apply here

MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, YouTube

Create-Joshua-Pearce.png


Pearce Publications: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education


Source

  • Aliaksei Petsiuk, Nagendra G.Tanikella, Samantha Dertinger, Adam Pringle, Shane Oberloier, Joshua M.Pearce. Partially RepRapable Automated Open Source Bag Valve Mask-based Ventilator. HardwareX, 8, (2020), e00131 https://doi.org/10.1016/j.ohx.2020.e00131 open access [1]
    • Source code: https://osf.io/fjdwz/
    • Open Source License GNU General Public License (GPL) v3.0 and CERN Open Hardware License (OHL) v1.2
    • Cost of Hardware < $170

Abstract

Osvent2.png

This study describes the development of a simple and easy-to-build portable automated bag valve mask (BVM) compression system, which, during acute shortages and supply chain disruptions can serve as a temporary emergency ventilator. The resuscitation system is based on the Arduino controller with a real-time operating system installed on a largely RepRap 3-D printable parametric component-based structure. The cost of the materials for the system is under $170, which makes it affordable for replication by makers around the world. The device provides a controlled breathing mode with tidal volumes from 100 to 800 milliliters, breathing rates from 5 to 40 breaths/minute, and inspiratory-to-expiratory ratio from 1:1 to 1:4. The system is designed for reliability and scalability of measurement circuits through the use of the serial peripheral interface and has the ability to connect additional hardware due to the object-oriented algorithmic approach. Experimental results after testing on an artificial lung for peak inspiratory pressure (PIP), respiratory rate (RR), positive end-expiratory pressure (PEEP), tidal volume, proximal pressure, and lung pressure demonstrate repeatability and accuracy exceeding human capabilities in BVM-based manual ventilation. Future work is necessary to further develop and test the system to make it acceptable for deployment outside of emergencies such as with COVID-19 pandemic in clinical environments, however, the nature of the design is such that desired features are relatively easy to add with the test using protocols and parametric design files provided.

Keywords[edit | edit source]

open hardware, COVID-19, RepRap, 3-D printing, additive manufacturing, medical hardware, open source medical hardware, ventilator, pandemic, ventilation, influenza pandemic, coronavirus, coronavirus pandemic, pandemic ventilator, single-limb, open source, embedded systems, real-time operating system

See also[edit | edit source]

See also COVID-19 resources from MOST[edit | edit source]


This page is part of an international project to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testingRepRap printing protocol: MOST‎ Lessons learnedMOST RepRap BuildMOST Prusa BuildMOST HS RepRap buildRepRap Print Server


Make me: Want to build a MOST RepRap? - Start here!Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer Humanitarian Crisis Response 3-D Printer