A review of open source ventilators for COVID-19 and future pandemics
![]() |
Michigan Tech's Open Sustainability Technology Lab.
Wanted: Students to make a distributed future with solar-powered open-source 3-D printing and recycling. |
![]() |
Pearce Publications: Energy Conservation • Energy Policy • Industrial Symbiosis • Life Cycle Analysis • Materials Science • Open Source • Photovoltaic Systems • Solar Cells • Sustainable Development • Sustainability Education
Source
- Pearce JM. A review of open source ventilators for COVID-19 and future pandemics. F1000Research 2020, 9:218 (https://doi.org/10.12688/f1000research.22942.2) academia open access
- up to date review of OS ventilators by Public Invention
Abstract
Coronavirus Disease 2019 (COVID-19) threatens to overwhelm our medical infrastructure at the regional level causing spikes in mortality rates because of shortages of critical equipment, like ventilators. Fortunately, with the recent development and widespread deployment of small-scale manufacturing technologies like RepRap-class 3-D printers and open source microcontrollers, mass distributed manufacturing of ventilators has the potential to overcome medical supply shortages. In this study, after providing a background on ventilators, the academic literature is reviewed to find the existing and already openly-published, vetted designs for ventilators systems. These articles are analyzed to determine if the designs are open source both in spirit (license) as well as practical details (e.g. possessing accessible design source files, bill of materials, assembly instructions, wiring diagrams, firmware and software as well as operation and calibration instructions). Next, the existing Internet and gray literature are reviewed for open source ventilator projects and designs. The results of this review found that the tested and peer-reviewed systems lacked complete documentation and the open systems that were documented were either at the very early stages of design (sometimes without even a prototype) and were essentially only basically tested (if at all). With the considerably larger motivation of an ongoing pandemic, it is assumed these projects will garner greater attention and resources to make significant progress to reach a functional and easily-replicated system. There is a large amount of future work needed to move open source ventilators up to the level considered scientific-grade equipment, and even further work needed to reach medical-grade hardware. Future work is needed to achieve the potential of this approach by developing policies, updating regulations, and securing funding mechanisms for the development and testing of open source ventilators for both the current COVID19 pandemic as well as for future pandemics and for everyday use in low-resource settings.
Keywords[edit | edit source]
ventilator, pandemic, ventilation, influenza pandemic, open source, open hardware, COVID-19, medical hardware
See also[edit | edit source]
- Open-Source Medical Hardware for Pandemics
- Parametric Nasopharyngeal Swab for Sampling COVID-19 and Other Respiratory Viruses: Open Source Design, SLA 3-D Printing and UV Curing System
- Maximizing Returns for Public Funding of Medical Research with Open-source Hardware
- Economic Potential for Distributed Manufacturing of Adaptive Aids for Arthritis Patients in the U.S.
- 3-D printing open-source click-MUAC bands for identification of malnutrition
- Emergence of Home Manufacturing in the Developed World: Return on Investment for Open-Source 3-D Printers
- Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers
- Distributed Manufacturing of Flexible Products- Technical Feasibility and Economic Viability
- Quantifying the Value of Open Source Hardware Development
- Low-cost open source ultrasound-sensing based navigational support for visually impaired
- Open-Source Three-Dimensional Printable Infant Clubfoot Brace
- Additively Manufactured Parametric Universal Clip-System: An Open Source Approach for Aiding Personal Exposure Measurement in the Breathing Zone
See also COVID-19 resources from MOST[edit | edit source]
- 2020 Michigan Tech Open Sustainability Technology Group COVID19 Projects & Publications
This page is part of an international project to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.
Research: Open source 3-D printing of OSAT • RecycleBot • LCA of home recycling • Green Distributed Recycling • Ethical Filament • LCA of distributed manufacturing • RepRap LCA Energy and CO2 • Solar-powered RepRaps • solar powered recyclebot • Feasibility hub • Mechanical testing • RepRap printing protocol: MOST• Lessons learned • MOST RepRap Build • MOST Prusa Build • MOST HS RepRap build • RepRap Print Server Make me: Want to build a MOST RepRap? - Start here! • Delta Build Overview:MOST • Athena Build Overview • MOST metal 3-D printer • Humanitarian Crisis Response 3-D Printer |