Agglom.png
FA info icon.svg Angle down icon.svg Source data
Type Paper
Cite as Citation reference for the source document. Jephias Gwamuri, Ragavendran Venkatesan, Mehdi Sadatdol, Jeyanthinath Mayandi , Durdu O. Guney, Joshua M. Pearce, Ambient-dependent Agglomeration and Surface-Enhanced Raman Spectroscopy Response of Self-Assembled Silver Nano-particles for Plasmonic Photovoltaic Devices, Journal of Photonics for Energy 7(3), 037002 (2017), doi: 10.1117/1.JPE.7.037002 open access

The agglomeration/dewetting process of thin silver films provides a scalable method of obtaining self-assembled nanoparticles (SANPs) for plasmonics based thin-film solar photovoltaic (PV) devices. Here, we show the effect of annealing ambiance on silver SANP average size, particle/cluster finite shape, substrate area coverage/particle distribution and how these physical parameters influence optical properties and surface-enhanced Raman scattering (SERS) responses of SANPs. Statistical analysis performed indicates that generally Ag SANPs processed in the presence of a gas (Argon and Nitrogen) ambiance tend to have smaller average size particles compared to those processed under vacuum. Optical properties are observed to be highly dependent on particle size, separation distance as well as finite shape. The greatest SERS enhancement was observed for the argon processed samples. There is a correlation between simulation and experimental data that indicate argon processed AgNPs have a great potential to enhance light coupling when integrated to thin-film PV.

Keywords[edit | edit source]

Photovoltaics (PV), Raman scattering, Plasmonics, Agglomeration, Self-assembly, Thin-film PV, Optical properties.

See also[edit | edit source]

FA info icon.svg Angle down icon.svg Page data
Authors Joshua M. Pearce
License CC-BY-SA-3.0
Language English (en)
Related 0 subpages, 22 pages link here
Impact 341 page views
Created September 23, 2017 by Joshua M. Pearce
Modified February 23, 2024 by Maintenance script
Cookies help us deliver our services. By using our services, you agree to our use of cookies.