Honeycombplasmonic.jpeg
Project data
Authors Mehdi Sadatgol
Nupur Bihari
Joshua M. Pearce
Durdu O. Guney
Status Designed
Modelled
Links Academia.edu
OSAPublishing.org
Export to Open Know How Manifest

"[https" has not been listed as valid URI scheme.

Device data
Location data
Loading map...
Location Michigan, USA

Sunhusky.png Michigan Tech's Open Sustainability Technology Lab.

Contact Dr. Joshua Pearce
MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, YouTube

Create-Joshua-Pearce.png


Pearce Publications: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education


This paper presents a novel design for the top contact of thin film photovoltaic (PV) solar cells. The new top contact is formed by fabricating a 20nm thin honeycomb shaped silver mesh on top of an ultra-thin 13nm of indium tin oxide. The new top contact offers the potential to reduce the series resistance of the cell while increasing the light current via plasmonic resonance. Using the nano-bead lithography technique the honeycomb top contact was fabricated and electrically characterized. The experimental results verified the new contact reduces the sheet resistance by about 40%. Numerical simulations were then used to analyze the potential performance enhancement in the cell. The results suggest the proposed top contact integrated with a typical thin film hydrogenated amorphous silicon PV device would lead to more than an 8% improvement in the overall efficiency of the cell.

Source

Method[edit | edit source]

See also[edit | edit source]