Nanolith.jpg
Device data
Design files https://www.youmagine.com/designs/dip-holder-for-nanosphere-lithography YouMagine.com
Software license [ ]
Hardware license [ ]
Location data
Loading map...
Location Michigan, USA

Sunhusky.png Michigan Tech's Open Sustainability Technology Lab.

Contact Dr. Joshua Pearce now at Free Appropriate Sustainable Technology
MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, YouTube

Create-Joshua-Pearce.png


Tctscover.png Create-Joshua-Pearce.png Pearce Publications
FAST
MOST
QAS
Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education

OSL.jpg Feedingeveryone.jpg


Recent advances in the use of plasmonic metamaterials to improve absorption of light in thin-film solar photovoltaic devices has created a demand for a scalable method of patterning large areas with metal nanostructures deposited in an ordered array. This article describes two methods of fabricating ordered 2D nanosphere colloidal films: spin coating and interface coating. The two methods are compared and parameter optimization discussed. The study reveals that:

  • For smaller nanosphere sizes, spin coating is more favorable, while for larger nanospheres, the angled interface coating provides more coverage and uniformity.
  • A surfactant-free approach for interface coating is developed to fabricate zero-contamination colloidal films.
  • Each of the methods reaches an overall coverage of more than 90% and can be used for nanosphere lithography to form plasmonic metamaterials.

Source

Methods[edit | edit source]

Detailed methods in the paper - also supported by:

See also[edit | edit source]