Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament


Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Currently looking for PhD or MSC student interested in solar energy policy- apply now!
Contact Dr. Joshua Pearce - Apply here

MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, Instagram, YouTube

OSL.jpg


This page is part of an international project to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testingRepRap printing protocol: MOST‎ Lessons learnedMOST RepRap BuildMOST Prusa BuildMOST HS RepRap buildRepRap Print Server


Make me: Want to build a MOST RepRap? - Start here!Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer Humanitarian Crisis Response 3-D Printer



SourceEdit

HighlightsEdit

P1.jpg
  • Life cycle analysis performed on recycling of high density polyethylene (HDPE).
  • HDPE filament is used additive manufacturing with open-source 3-D printers.
  • Compared energy & greenhouse gas emissions for distributed vs centralized recycling.
  • Distributed recycling has lower environmental impact than centralized recycling.

AbstractEdit

Recyclebot-process.png
The growth of desktop 3-D printers is driving an interest in recycled 3-D printer filament to reduce costs of distributed production. Life cycle analysis studies were performed on the recycling of high density polyethylene into filament suitable for additive layer manufacturing with 3-D printers. The conventional centralized recycling system for high population density and low population density rural locations was compared to the proposed in home, distributed recycling system. This system would involve shredding and then producing filament with an open-source plastic extruder from post-consumer plastics and then printing the extruded filament into usable, value-added parts and products with 3-D printers such as the open-source self replicating rapid prototyper, or RepRap. The embodied energy and carbon dioxide emissions were calculated for high density polyethylene recycling using SimaPro 7.2 and the database EcoInvent v2.0. The results showed that distributed recycling uses less embodied energy than the best-case scenario used for centralized recycling. For centralized recycling in a low-density population case study involving substantial embodied energy use for transportation and collection these savings for distributed recycling were found to extend to over 80%. If the distributed process is applied to the U.S. high density polyethylene currently recycled, more than 100 million MJ of energy could be conserved per annum along with the concomitant significant reductions in greenhouse gas emissions. It is concluded that with the open-source 3-D printing network expanding rapidly the potential for widespread adoption of in-home recycling of post-consumer plastic represents a novel path to a future of distributed manufacturing appropriate for both the developed and developing world with lower environmental impacts than the current system.

Key FindingsEdit

Energy Demand & Greenhouse Gas Emissions.

Case Energy Demand (MJ/kg HDPE) Percent Reduction (%) for Distributed Recycling Greenhouse Gas Emissions (kg CO2 eq per kg HDPE)
Distributed Recycling: Insulated RecycleBot 8.74 -- 0.52
Virgin Resin 79.67 89 1.82
Centralized Recycling – High Density Population: Detroit 9 3 0.63
Centralized Recycling – Low Density Population: Copper Harbor (monthly) 28.4 69 2.65
Centralized Recycling – Low Density Population: Copper Harbor (bi-weekly) 48.9 82 4.04
3DPI.tv on Recycling with Recyclebot

<display_points type="hybrid" center="44.992885,-86.410678"zoom="6" width="375" height="400"> 47.467325, -87.890968|Copper Harbor 47.117336, -88.571091|Houghton 42.439674, -83.012695|Detroit </display_points>

See AlsoEdit

RepRapable Recyclebot and the Wild West of Recycling

Recycling TechnologyEdit

Distributed Recycling LCAEdit

Literature ReviewsEdit

Gigarecycle.png

ExternalsEdit


  • Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., & Camargo, M. Polymer Recycling and Additive Manufacturing in an Open Source context: Optimization of processes and methods. [2]
  • Investigating Material Degradation through the Recycling of PLA in Additively Manufactured Parts [3]
  • Mohammed, M.I., Das, A., Gomez-Kervin, E., Wilson, D. and Gibson, I., EcoPrinting: Investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing. [4]
  • Kariz, M., Sernek, M., Obućina, M. and Kuzman, M.K., 2017. Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications. [5]
  • Kaynak, B., Spoerk, M., Shirole, A., Ziegler, W. and Sapkota, J., 2018. Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing. Macromolecular Materials and Engineering, p.1800037. [6]
  • O. Martikka et al., "Mechanical Properties of 3D-Printed Wood-Plastic Composites", Key Engineering Materials, Vol. 777, pp. 499-507, 2018 [7]
  • Yang, T.C., 2018. Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers, 10(9), p.976. [8]

NewsEdit

Gigabotxonfox.png
  1. Industrial 3D Printing Goes Skateboarding MTU News 14k
    1. Science Daily 2.9k
    2. Eureka Alert 16.4k
    3. TechXplore 76.3k
    4. Nanowerk 78.7k
    5. ECN Magazine 92.6k
    6. Labroots 110k
    7. Newswise 131k
    8. Zwoops 132k
    9. Space Daily 161k
    10. Bioengineer
    11. 3D Printing Progress
    12. Science Technology and Research News
    13. E Peak
    14. I Connect 007
    15. Live Science
  2. 再生塑料经3D技术加持变身运动用品 Finance East Money (China) 1056
    1. Info.21CP 45k
  3. Green Fab Lab: Using the Fab Lab To 3D Print New Things From Recycled Plastics 3DPrint 44k
  4. Michigan Tech scientists write recommendations for greener 3D printing 3D Printing Industry 71.9k
  5. Funding Makerspaces With 3D Printing? Fabaloo 114k
  6. 3D Printer Turns Recycled Plastic into Sporting Goods Design News 142k
    1. Flipboard 4.2k
    2. Quartz Share 2.8k
  7. Case Study: 3D Printer Using Fused Granular Fabrication – Cheap & Economic Efficiency 3D Printing 143k
  8. "Gigabot X" 3-D printer helps find new uses for recycled plastic Tv6 Fox UP 146k
  9. Engineers 3D Print Skateboard Using Waste Plastic - Industrial Equipment News 224k
  10. Gigabot X Prints from Waste Plastics Digital Engineering 246k
  11. 种经济环保的新型3D打印机 Materials and Testing (China) 254k
  12. Researchers Utilize Fab Lab To 3D Print Using Recycled Plastic - Manufacturing Talk Radio
  13. Tech: Industrial 3D printing goes skateboarding — (Report) Tunisiesoir
  14. Industrial 3D printing could soon be used for outdoor sporting goods The Edge
  15. How 3D Printing is Making its Way Into Outdoor Sporting Goods EE Design IT
  16. DSM and CEAD to develop new materials and applications for pelletized 3D printing 3DPrinting Industry 73k
  17. Industrial 3D printer prints directly from recycled shredded waste Design Fax
  18. China’s ban on plastics and its effect on the U.S. economy - American Recycler

MediaEdit