FA info icon.svg Angle down icon.svg Source data
Type Paper
Location Michigan
Cite as Citation reference for the source document. Adesanya, A.A.; Sommerfeldt, N.; Pearce, J.M. Achieving 100% Renewable and Self-Sufficient Electricity in Impoverished, Rural, Northern Climates: Case Studies from Upper Michigan, USA. Electricity 2022, 3, 264-296. https://doi.org/10.3390/electricity3030016 Academia OA

The development of 100% renewable electricity (RE) systems play a pivotal role in ensuring climate stability. Many municipalities blessed with wealth, an educated and progressive citizenry, and large RE resources, have already reached 100% RE generation. Impoverished municipalities in unwelcoming environments both politically and climatically (e.g., northern latitudes with long, dark winter conditions) appear to be incapable of transitioning to renewables. This study challenges that widespread assumption by conducting a detailed technical and economic analysis for three representative municipalities in the Western Upper Peninsula of Michigan. Each municipality is simulated with their own hourly electricity demand and climate profiles using an electrical supply system based on local wind, solar, hydropower, and battery storage. Sensitivities are run on all economic and technical variables. Results show that transition to 100% RE is technically feasible and economically viable. In all baseline scenarios, the 100% RE systems produced a levelized cost of electricity up to 43% less than the centralized utility rates, which are predominantly fueled by gas and coal. Current policies, however, prevent such self-sufficient systems from being deployed, which are not only detrimental to the global environment, but also aggravate the economic depression of such regions. Potential energy savings advance the prohibitive energy justice principle.

See also[edit | edit source]

Rural Renewable Energy

PV Systems in the UP

Other technical options

Cookies help us deliver our services. By using our services, you agree to our use of cookies.