Source

  • Samantha C. Dertinger, Nicole Gallup, Nagendra G. Tanikella, Marzio Grasso, Samireh Vahid,Peter J.S.Foot, Joshua M. Pearce. Technical pathways for distributed recycling of polymer composites for distributed manufacturing: Windshield wiper blades. Resources, Conservation and Recycling 157, 2020, 104810. https://doi.org/10.1016/j.resconrec.2020.104810 open access

Highlights

^ Distributed recycling and additive manufacturing (DRAM) new pathways.

  • Pathways for DRAM of complex polymer composites explored.
  • Includes mechanical grinding and various AM methods.
  • DRAM can be used to improve the variety of solutions for a circular economy.

Abstract

Recylce-choices.jpg

Centralized waste plastic recycling is economically challenging, yet distributed recycling and additive manufacturing (DRAM) provides consumers with direct economic incentives to recycle. This study explores the technical pathways for DRAM of complex polymer composites using a case study of windshield wiper blades. These blades are a thermoplastic composite made up of a soft (flexible) and hard (less flexible) material. The distributed manufacturing methods included mechanical grinding to fused granular fabrication, heated syringe printing, 3-D printed molds coupled to injection molding and filament production in a recyclebot to fused filament fabrication. The particle size, angle of repose, thermal and rheological properties are characterized for the two sub-materials to define the conditions for the extrusion. A successful pathway for fabricating new products was found and the mechanical properties of the resultant components were quantified. Finally, the means to convert scrap windshield wiper blades into useful, high-value, bespoke biomedical products of fingertip grips for hand prosthetics was demonstrated. This study showed that the DRAM model of materials recycling can be used to improve the variety of solutions for a circular economy.

Keywords

Circular economy; Distributed recycling; Energy conservation; Polymer recycling; Sustainable development; distributed manufacturing; life cycle analysis; recycling; recyclebot; 3-D printing; Open source hardware; Open hardware;  RepRap; Recycling; Polymers; Plastic; Recyclebot; Waste plastic; Composites; Polymer composites; Extruder; Upcycle;  Materials science;additive manufacturing; distributed manufacturing; open-source; waste plastic; extruder; upcycle

See also

RepRapable Recyclebot and the Wild West of Recycling

mqdefault.jpgYouTube_icon.svg
mqdefault.jpgYouTube_icon.svg

Recycling Technology

Distributed Recycling LCA

Literature Reviews

Gigarecycle.png

Externals

  • Economist article on U. of Washington's HDPE boat, Oprn3dp.me
  • https://ultimaker.com/en/resources/52444-ocean-plastic-community-project
  • Another possible solution - reusable containers [1]
  • Commercial https://dyzedesign.com/pulsar-pellet-extruder/
  • ---
  • Cruz, F., Lanza, S., Boudaoud, H., Hoppe, S., & Camargo, M. Polymer Recycling and Additive Manufacturing in an Open Source context: Optimization of processes and methods. [2]
  • Investigating Material Degradation through the Recycling of PLA in Additively Manufactured Parts
  • Mohammed, M.I., Das, A., Gomez-Kervin, E., Wilson, D. and Gibson, I., EcoPrinting: Investigating the use of 100% recycled Acrylonitrile Butadiene Styrene (ABS) for Additive Manufacturing.
  • Kariz, M., Sernek, M., Obućina, M. and Kuzman, M.K., 2017. Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications. [3]
  • Kaynak, B., Spoerk, M., Shirole, A., Ziegler, W. and Sapkota, J., 2018. Polypropylene/Cellulose Composites for Material Extrusion Additive Manufacturing. Macromolecular Materials and Engineering, p.1800037. [4]
  • O. Martikka et al., "Mechanical Properties of 3D-Printed Wood-Plastic Composites", Key Engineering Materials, Vol. 777, pp. 499-507, 2018 [5]
  • Yang, T.C., 2018. Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers, 10(9), p.976. [6]
  • Romani, A., Rognoli, V., & Levi, M. (2021). Design, Materials, and Extrusion-Based Additive Manufacturing in Circular Economy Contexts: From Waste to New Products. Sustainability, 13(13), 7269. https://www.mdpi.com/2071-1050/13/13/7269/pdf
Cookies help us deliver our services. By using our services, you agree to our use of cookies.