FA info icon.svg Angle down icon.svg Source data
Type Paper
Cite as Citation reference for the source document. John Laureto, Julie Tomasi, Julia A. King, Joshua M. Pearce. Thermal properties of 3-D printed polylactic acid-metal composites, Progress in Additive Manufacturing 2(1), 57-71 (2017). doi:10.1007/s40964-017-0019-x open access

Standard fused filament fabrication (FFF)-based 3-D printers fabricate parts from thermopolymers, such as polylactic acid (PLA). A new range of metal based PLA composites are available providing a novel range of potential engineering materials for such 3-D printers. Currently, limited material data, specifically thermal property characterization is available on these composites. As a result, the application of these materials into functional engineered systems is not possible. This study aims to fill the knowledge gap by quantifying the thermal properties of copperFill, bronzeFill, magnetic iron PLA, and stainless steel PLA composites and provide insight into the technical considerations of FFF composite 3-D printing. Specifically, in this study the correlation of the composite microstructure and printing parameters are explored and the results of thermal conductivity analysis as a function of printed matrix properties are provided. Considering the relative deviation from the filament raw bulk analysis, the results show the printing operation significantly impacts the resultant component density. Experimentally collected thermal conductivity values, however, do not correlate to the theoretical models in the literature and more rigorous quantitative exercises are required to determine true percent porosity to accurately model the effect of air pore volume fraction on thermal conductivity. Despite this limitation, the thermal conductivity values provided can be used to engineer thermal conductivity into 3-D printed parts with these PLA-based composites. Finally, several high-value applications of such 3-D printed materials that look metallic, but have low thermal conductivity are reviewed.

Keywords[edit | edit source]

Additive manufacturing, 3-D printing, Thermal conductivity, Polylactic acid, RepRap, Composite

See also[edit | edit source]

In the News[edit | edit source]

FA info icon.svg Angle down icon.svg Page data
Authors Joshua M. Pearce
License CC-BY-SA-3.0
Language English (en)
Related 0 subpages, 5 pages link here
Impact 479 page views
Created April 13, 2017 by Joshua M. Pearce
Modified July 14, 2023 by Felipe Schenone
Cookies help us deliver our services. By using our services, you agree to our use of cookies.