Device data
Page data
Type Project, Device
Keywords open source hardware, drying, materials processing, vacuum oven, small-scale, lab equipment, air-powered, open hardware, open source, digital manufacturing, dehydration, 3d printing, additive manufacturing, distributed manufacturing, laboratory equipment, chemistry, medical devices
SDGs Sustainable Development Goals SDG09 Industry innovation and infrastructure
Authors Joshua M. Pearce
Published 2021
License CC BY-SA 4.0
Affiliations MTU
Impact Number of views to this page. Views by admins and bots are not counted, and multiple views during the same session are counted as one. 357
Location data
Loading map...
Location Michigan, USA

Sunhusky.png Michigan Tech's Open Sustainability Technology Lab.

Contact Dr. Joshua Pearce now at Free Appropriate Sustainable Technology
MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, YouTube


Tctscover.png Create-Joshua-Pearce.png Pearce Publications
Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education

OSL.jpg Feedingeveryone.jpg

Vacuum drying can dehydrate materials further than dry heat methods, while protecting sensitive materials from thermal degradation. Many industries have shifted to vacuum drying as cost- or time-saving measures. Small-scale vacuum drying, however, has been limited by the high costs of specialty scientific tools. To make vacuum drying more accessible, this study provides design and performance information for a small-scale open source vacuum oven, which can be fabricated from off-the-shelf and 3-D printed components. The oven is tested for drying speed and effectiveness on both waste plastic polyethylene terephthalate (PET) and a consortium of bacteria developed for bioprocessing of terephthalate wastes to assist in distributed recycling of PET for both additive manufacturing as well as potential food. Both materials can be damaged when exposed to high temperatures, making vacuum drying a desirable solution. The results showed that the open source vacuum oven was effective at drying both plastic and biomaterials, drying at a higher rate than a hot-air dryer for small samples or for low volumes of water. The system can be constructed for less than 20% of commercial vacuum dryer costs for several laboratory-scale applications, including dehydration of bio-organisms, drying plastic for distributed recycling and additive manufacturing, and chemical processing.


Keywords[edit | edit source]

open source hardware; drying; materials processing; vacuum oven; small-scale; lab equipment; air-powered; open hardware; open source; digital manufacturing; dehydration; 3-D printing; additive manufacturing; distributed manufacturing; laboratory equipment

See also[edit | edit source]