Tctscover.png Create-Joshua-Pearce.png Pearce Publications
FAST
MOST
QAS
Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open SourceMedical Photovoltaic Systems Solar CellsSustainable Development Sustainability Education

OSL.jpg Feedingeveryone.jpg


Page data
Authors Joshua M. Pearce
Published 2015
License CC-BY-SA-4.0
Impact Number of views to this page. Views by admins and bots are not counted. Multiple views during the same session are counted as one. 1,282

Source

Bdrf-pv.png
  • Andrews, R.W.; Pollard, A.; Pearce, J.M., "Photovoltaic System Performance Enhancement With Nontracking Planar Concentrators: Experimental Results and Bidirectional Reflectance Function (BDRF)-Based Modeling," IEEE Journal of Photovoltaics 5(6), pp.1626-1635 (2015). DOI: 10.1109/JPHOTOV.2015.2478064 open access

Abstract

Lc-pv.jpg
Lowc.png

Non-tracking planar concentrators are a low-cost method of increasing the performance of traditional solar photovoltaic (PV) systems. This paper presents new methodologies for properly modeling this type of system design and experimental results using a bi-directional reflectance function (BDRF) of non-ideal surfaces rather than traditional geometric optics. This methodology allows for the evaluation and optimization of specular and non-specular reflectors in planar concentration systems. In addition, an outdoor system has been shown to improve energy yield by 45% for a traditional flat glass module and by 40% for a prismatic glass crystalline silicon module when compared to a control module at the same orientation. When compared to a control module set at the optimal tilt angle for this region, the energy improvement is 18% for both system. Simulations show that a maximum increase of 30% is achievable for an optimized system located in Kingston, ON using a reflector with specular reflection and an integrated hemispherical reflectance of 80%. This validated model can be used to optimize reflector topology to identify the potential for increased energy harvest from both existing PV and new-build PV assets.

Discussion[edit | edit source]


See also[edit | edit source]

Reflectorpv.jpg

In the news[edit | edit source]