Flexible intermediate bulk containers-Fertilizer.jpg

Conventional farming, also known as traditional farming or industrial agriculture, refers to farming systems which include the use of synthetic chemical fertilizers, pesticides, herbicides and other continual inputs, genetically modified organisms, concentrated animal feeding operation]s, heavy irrigation, intensive tillage, or concentrated monoculture production. Thus conventional agriculture is typically highly resource-demanding and energy-intensive, but also highly productive. Despite its name, conventional agricultural methods have only been in development since the late Nineteenth Century, and did not become widespread until after World War 2 (see: Wikipedia:Green Revolution.

Conventional farming is usually contrasted to organic farming (or sometimes sustainable agriculture or permaculture), as these respond to site-specific conditions by integrating cultural, biological, and mechanical practices that foster cycling of resources, promote ecological balance, and conserve biodiversity.[1] Rather than using synthetic fertilizers, pesticides, growth regulators and livestock feed additives, organic farming systems rely on crop rotation, animal and plant manures as fertilizers, some hand weeding and biological pest control.[2] Some conventional agriculture operations may include limited polyculture, or some form of Integrated Pest Management. (See: Industrial organic agriculture).

Conventional versus organic farming

Advantages and disadvantages

Any newly developed technology will have positive and negative consequences. If we analyze the positive and negative aspects of the way that we produce food, perhaps we will be able to improve upon the good things, and reduce the negative impacts. With conventional farming it is possible to produce much larger quantities of food, on less land and with less manual labor than ever before in history.

With rising food costs and millions of people starving all over the world, it seems like we have a moral obligation to use conventional methods to produce large amounts of food at affordable prices. However, because many of the effects of conventional farming are unknown, and because of how many of the effects may be irreversible and harmful, it may be safer to stick to what we have been doing for hundreds of years. It may be considered irresponsible to continue using pesticides, irradiation and GMO's when we really don't know what the side effects are.


There is a common perception that organic farming is more ecologically sustainable than conventional farming. As a result of industrial farming conditions, today's mounting environmental stresses are further exacerbated, including:

There are many factors in how sustainable farming practices are, besides use of artificial chemicals. E.g.:

Human health

Organic foods are usually assumed to be healthier than conventionally-produced foods. Hundreds of studies have attempted to assess the whether conventionally-produced foods have different health effects from organically produced ones. In the last few years a few meta-studies have drawn differing conclusions based on those earlier studies. One meta-study of 237 studies conducted at Stanford concludes that "There isn't much difference between organic and conventional foods, if you're an adult and making a decision based solely on your health.".[4] Another meta-study lead by researchers at Newcastle University based on 343 earlier studies found that conventionally-produced crops contained 18-69% less antioxidants, were four times as likely to contain pesticide residues, and had, on average 48% higher concentrations of heavy metals (including cadmium) than organically-produced crops.[5]

Potential conflicts of interest have been identified in both of these cases, as the institutions involved with these studies have received funding from agriculture business interests in both the conventional and organic sectors.

Many supporters of organic agriculture rely on personal experiences and beliefs when choosing organic over conventionally produced food. "Although, as scientists, we may deplore the fact that people are swayed by non-scientific views, the fact is that a lot of them are. Despite the arguments presented by Trewavas, many people believe that organic production systems produce better food, care more for animal welfare and are kinder to the environment,".[6]


It is generally recognized that conventional farming produces a higher amount of food than organic. One meta-study found organic yields to be on average 80% that of conventional, but "the organic yield gap significantly differed between crop groups and regions.".[7] Another meta-analysis concluded that, "organic yields are typically lower than conventional yields. But these yield differences are highly contextual, depending on system and site characteristics, and range from 5% lower organic yields (rain-fed legumes and perennials on weak-acidic to weak-alkaline soils), 13% lower yields (when best organic practices are used), to 34% lower yields (when the conventional and organic systems are most comparable)."[8]

Modern farmland is claimed to produce 200 percent more wheat than the same area did 70 years ago. Hence switching to organic farming would lead to a reduction in output, e.g. by 20% for corn.[9] The figure is plausible, but we need more than one unattributed figure.[10]


Several studies have compared the local biodiversity of conventional and organic systems. A meta-study at the Swedish University of Agricultural Sciences concluded,

"Organic farming usually increases species richness, having on average 30% higher species richness than conventional farming systems. However, the results were variable among studies, and 16% of them actually showed a negative effect of organic farming on species richness. [...] Birds, insects, and plants usually showed an increased species richness in organic farming systems. However, the number of studies was low in most organism groups (range 2–19) and there was significant heterogeneity between studies. [...] On average, organisms were 50% more abundant in organic farming systems, but the results were highly variable between studies and organism groups. Birds, predatory insects, soil organisms and plants responded positively to organic farming, while non-predatory insects and pests did not. The positive effects of organic farming on abundance were prominent at the plot and field scales, but not for farms in matched landscapes.[11]

A study at the University of Bristol comparing 10 conventional and 10 organic agricultural landscapes found that although the organic farms had a greater amount of non-cultivated or "semi-natural" areas, they did not have higher biodiversity in those spaces. However, there was greater biodiversity in the organic farms' arable fields.[12]

There is a common concern that links yield (see above) and biodiversity. The assumption is that if organic agriculture has lower yields, this will increase the need for more areas under cultivation, and hence have a negative impact on region- or world-wide biodiversity. It is unclear whether any studies have been done to test this assumption.

Social and economic aspects

A study regarding agricultural knowledge distribution from Cardiff University found that, "the conventional food chain [...] tends to distribute knowledge towards input suppliers, and the organic food supply chain [...] distributes knowledge back towards the farm," due to their differing economic features.[13]


Pesticides are substances used to kill insects, plants and other organisms that negatively impact crop yield. They can range from hazardous, artificially-isolated chemicals, such as many organochlorides, to relatively innocuous plant-based preparations, like neem oil. Pesticides can have unintended consequences such as killing off beneficial, predatory insects.

Most of the pesticides in our food, by far, are natural pesticides produced by the plants. This leaves open the question of whether the artificial chemicals are worse for us. After all, not all substances are the same, and some (such as DDT) linger in the environment for far longer. It's also true that something is harmful given to lab rats in large quantities, yet not significantly harmful in small quantities - or even beneficial, since there has been research suggesting that toxins in small doses actually benefit an organism by making it react to the mild stress.[verification needed]

Many natural chemical compounds are also toxic or carcinogenic in large quantities, but we consume them in small quantities. Everything has a toxic dose - even water, salt or any nutrient.

There is a common perception that "the poisons are killing us." So why are we living longer than ever? If there is a negative effect from these traces of chemicals, the effect is much smaller than positive changes in modern times (e.g. better medicines and medical treatments).

Note that these arguments are not saying that "pesticides are good for you" - using them inappropriately, without following directions, has the potential to be very harmful. But when used properly, they appear to not be significantly harmful, and may not be harmful at all. Worrying about them may do us more harm than the chemicals themselves.


Flexible intermediate bulk containers-Fertilizer.jpg

Fertilisers are substances that can be supplied to the soil so as to improve the soil quality and promote the growth of any plants grown in this soil. Fertilisers come in several types and correct application differs depending on this type. Differences on application may include: method of introducing the fertiliser into the soil, the time of the year when the fertiliser is administered, etc...

En realidad, hay pocas dudas de que los fertilizantes dañan los ecosistemas. Pero, ¿es esto inevitable y cuáles son las alternativas? El uso limitado y la aplicación precisa reducen el efecto de la eutrofización en las vías fluviales. Descubrimientos más recientes, por ejemplo, el papel de los hongos del suelo , el impacto de los tés de compost y la terra preta , muestran que puede haber formas mucho más ecológicas de crear abundancia en la producción de alimentos. [ verificación necesaria ] Sin embargo, este conocimiento aún está en sus primeros años: el conocimiento aún se está desarrollando y el valioso conocimiento que ya existe aún no se ha difundido ampliamente.

Fuentes de nitrógeno

Borlaug dijo: [10]

Incluso si pudieras usar todo el material orgánico que tienes (el estiércol animal, los desechos humanos, los residuos vegetales) y devolverlos al suelo, no podrías alimentar a más de 4 mil millones de personas (y) lo harías. hay que aumentar drásticamente la superficie de cultivo...

En la actualidad, se utilizan aproximadamente 80 millones de toneladas de nutrientes nitrogenados cada año. Si intentara producir este nitrógeno orgánicamente, necesitaría 5 o 6 mil millones de cabezas de ganado adicionales para suministrar el estiércol.

Esto parece no considerar el impacto de la fijación de nitrógeno , por ejemplo, por cultivos de leguminosas . (Este es otro argumento para que el vegetarianismo y el veganismo sean más ecológicos: vacas que producen menos metano y más cultivos de leguminosas para reemplazarlas, que también producirán nitrógeno).

Actualmente, se desechan enormes cantidades de nutrientes en nuestras aguas residuales . A través del humabono esto se puede salvar, pero puede no ser adecuado para muchos cultivos alimentarios, especialmente donde la comida está cerca del suelo.


Manzana transgénica

Un organismo genéticamente modificado (OMG) es un organismo cuyo material genético ha sido alterado utilizando técnicas de ingeniería genética. La ingeniería genética implica esencialmente la incorporación de genes de una especie diferente, incluso en todo el Reino, en el genoma del huésped. Por lo tanto, los genes de animales y bacterias pueden insertarse en el genoma de una planta para crear una nueva planta transgénica. Por lo tanto, la reproducción transgénica es diferente de la reproducción selectiva tradicional y, por lo tanto, los nuevos productos genéticos (como las proteínas) del OGM pueden tener algunos efectos ambientales inesperados.

Ya se han producido comercialmente varios anticuerpos y medicamentos mediante ingeniería genética. Por ejemplo, la insulina de los mamíferos se produce mediante ADN recombinante en bacterias. Esto hace que la hormona sea mucho más barata que la insulina natural derivada de la biosíntesis convencional. Sin embargo, cuando la ingeniería genética se aplica en la agricultura para la producción de cultivos, existen muchas incertidumbres y riesgos.

A diferencia de la insulina u otras drogas y hormonas GM fabricadas en el laboratorio, los cultivos GM no se pueden controlar ni revocar una vez que se liberan en la naturaleza. [14] Además de los posibles efectos nocivos sobre los ecosistemas (incluidos los agroecosistemas), la introducción de OMG en la cadena alimentaria humana plantea un riesgo sin precedentes para la salud pública.

Los alimentos genéticamente modificados han causado una controversia considerable desde principios de la década de 1990, cuando se introdujeron por primera vez. Sin embargo, esta controversia solo se relaciona con los organismos GM que se han creado utilizando el método de transgénesis . La cisgénesis ha demostrado ser igualmente segura que el fitomejoramiento regular por la EFSA [15]

La producción de alimentos convencional a menudo utiliza OGM que son diferentes de las plantas y animales que han sido criados selectivamente.. Existen inconvenientes ambientales en el uso de OMG. Una es que es difícil controlar la reproducción de las plantas, especialmente cuando crecen en un entorno abierto y no están contenidas dentro de una estructura como un invernadero. Cuando hay una finca con OGM cerca de otra finca, puede haber un problema de cruce entre las dos variedades de plantas. Esto puede resultar en una deriva genética que puede tener impactos negativos en las fincas que producen variedades tradicionales. Cuando este efecto se combina con el gen terminador (un gen insertado en las plantas por empresas que producen OMG, que impide que sus semillas produzcan descendencia viable), esto puede tener efectos devastadores en las variedades autóctonas y para los agricultores que han conservado su variedad durante generaciones. .


  1. Definición según el USDA
  2. "Nutritional quality of organic food: shades of grey or shades of green?", Christine Williams Proceedings of the Nutrition Society 2002
  3. Brown, Lester R. Plan B 4.0: Mobilizing to Save Civilization. W.W. Norton, 2009.
  4. http://med.stanford.edu/news/all-news/2012/09/little-evidence-of-health-benefits-from-organic-foods-study-finds.html
  5. http://research.ncl.ac.uk/nefg/QOF/crops/page.php?page=1
  6. "Organic movement reveals a shift in the social position of science" Annette Mørkeberg & John R. Porter Nature Number 412, page 677, August 2001
  7. Tomek de Ponti, Bert Rijk, Martin K. van Ittersum, "The crop yield gap between organic and conventional agriculture" in Agricultural Systems 108 (2012) 1–9
  8. Verena Seufert , Navin Ramankutty, Jonathan A. Foley, "Comparing the yields of organic and conventional agriculture," in Nature 485 (10 May 2012) 229-234
  9. Exposing the organic myth, BusinessWeek.com (msnbc.com). (The claim about the 200% increase for wheat is made on page 2).
  10. Saltar a: 10.0 10.1 Billions Served: Norman Borlaug interviewed by Ronald Bailey, April 2000, on Reason.org - this is a consistently skeptical and conservative site, including against mainstream science, so it needs to be checked for bias and selective reporting; however BorlaugW is a Nobel laureate and an influential scientist, so his interview is certainly notable."
  11. Janne Bengtsson, Johan Ahnström, Ann-Christin Weibull, "The effects of organic agriculture on biodiversity and abundance: a meta-analysis" in Journal of Applied Ecology 42 (2005) 261–269
  12. R.H. Gibson, S. Pearce, R.J. Morris, W.O.C. Symondson, J. Memmott, "Plant diversity and land use under organic and conventional agriculture: a whole-farm approach" in Journal of Applied Ecology 44 (2007) 792–803
  13. Kevin Morgan, Jonathan Murdoch, "Organic vs. conventional agriculture: knowledge, power and innovation in the food chain," in Geoforum 31 (2000) 159-173
  14. Paull, John (2018) Genetically Modified Organisms (GMOs) as Invasive Species, Journal of Environment Protection and Sustainable Development. 4 (3): 31–37.
  15. Kijk magazine 10/2012
Cookies help us deliver our services. By using our services, you agree to our use of cookies.