Ctscan.png
Project data
Authors D.C. Denkenberger
M.J. Brandemuehl
Joshua M. Pearce
J. Zhai
Export to Open Know How Manifest
Location data
Loading map...
Location Michigan, USA

Sunhusky.png Michigan Tech's Open Sustainability Technology Lab.

Contact Dr. Joshua Pearce now at Free Appropriate Sustainable Technology
MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, YouTube

Create-Joshua-Pearce.png


Tctscover.png Create-Joshua-Pearce.png Pearce Publications
FAST
MOST
QAS
Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education

OSL.jpg Feedingeveryone.jpg


Recent theoretical developments in expanded microchannel polymer-based heat exchangers were promising, but the initial experiments underperformed simple theory. In order to understand this discrepancy, this paper introduces a nondestructive methodology for characterizing polymer heat exchangers. A computerized tomography (X-ray) scan was performed to diagnose the problem. The method was tested on the expanded microchannel polymer heat exchanger to determine the variations in geometry between the theoretical and experimental heat exchanger. Channels were found to have variable heights causing flow maldistribution. The results are discussed to guide further technological development of this approach to heat exchanger design and fabrication and lays the groundwork for an advanced discretized modeling.

Source

See also[edit | edit source]

Manufacturing the HX with an open source laser welding system[edit | edit source]

Hxinner.jpg