Spheremic.JPG
Device data
Location data
Loading map...
Location Michigan, USA

Sunhusky.png Michigan Tech's Open Sustainability Technology Lab.

Contact Dr. Joshua Pearce
MOST: Projects & Publications, Methods, Lit. reviews, People, Sponsors, News
Updates: Twitter, YouTube

Create-Joshua-Pearce.png


Pearce Publications: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education


Spherical microphones arrays are commonly utilized for recording, analyzing and reproducing sound-fields. In the context of higher-order Ambisonics, the spatial resolution depends on the number and distribution of sensors over the surface of a sphere. Commercially available arrays have set configurations that cannot be changed, which limits their usability for experimental and educational spatial audio applications. Therefore, an opensource modular design using MEMS microphones and 3D printing is proposed for selectively capturing frequency-dependent spatial components of sound-fields. Following a modular paradigm, the presented device is low cost and decomposes the array into smaller units (a matrix, connectors and microphones), which can be easily rearranged to capture up to third-order spherical harmonic signals with various physical configurations.

Source

  • González, R., Pearce, J. and Lokki, T., 2018, August. Modular Design for Spherical Microphone Arrays. In Audio Engineering Society Conference: 2018 AES International Conference on Audio for Virtual and Augmented Reality. 2018 AES International Conference on Audio for Virtual and Augmented Reality (August 2018). Paper Number: P3-10. http://www.aes.org/e-lib/browse.cfm?elib=19701

See also[edit | edit source]