이 페이지에서는 일반적으로 고체 연료를 사용하는 스토브에 대해 설명합니다. 태양열 버전에 대해서는 태양열 요리를 참조하세요.

개선된 고체 바이오 연료 스토브 , 무연 스토브 또는 목재 보존 스토브 는 일반 고체 바이오 연료 스토브 보다 연료 효율이 10% 이상 높 거나 전통적인 요리 화재와 관련된 건강 문제를 줄이도록 설계된 고체 바이오 연료 스토브 입니다 . 개발도상국에서 널리 사용되며 매우 단순한 디자인인 경우가 많습니다. 이러한 설계는 의도한 대로 작동할 때 집을 유해한 연기로 채우지 않으며(연기를 줄이기 위한 보다 효율적인 연소 및 연기 제거를 위한 굴뚝 또는 환기 장치를 통해) 연료를 덜 사용합니다. 지역에서 사용 가능한 재료, 환경 조건 및 지역사회 요구에 따라 여러 가지 디자인이 개발되었습니다.

Appropedia 프로젝트

건강에 미치는 영향

굴뚝이 없는 난로나 장작, 똥, 석탄, 농작물 폐기물 등의 고체 연료를 사용하여 조리 및 난방을 하는 것은 실내 대기 오염을 초래할 수 있습니다 . 이 실내 연기에는 일산화탄소, 벤젠, 알데히드, 작은 그을음 ​​및 먼지 입자 및 기타 건강에 해로운 오염 물질이 포함되어 있습니다. WHO 평가에 따르면 실내 공기 오염은 질병의 8번째로 중요한 위험 요소입니다. 이는 기관지염 및 폐렴을 포함한 급성 호흡기 감염(ARI)의 특히 중요한 위험 요소입니다. 매년 IAP는 160만 명의 사망(20초마다 사망)에 연루되어 있습니다. 여성과 어린이는 난로 근처에서 가장 많은 시간을 보내기 때문에 특히 취약합니다. [1]

보다 청정하게 연소되는 연료를 사용하고 개선된 스토브를 사용하거나 행동을 변화시키면 실내 연기 및 관련 질병에 대한 노출을 크게 줄일 수 있습니다. [2]

연료 절약 및 연료 효율성

세계의 숲은 농업과 벌목 활동으로 인한 엄청난 압력으로 인해 줄어들고 있습니다. 일부 지역에서는 남부주요 요리 연료인 장작 에 대한 수색이 강화되는 것이 문제의 중요한 원인입니다. 이 목재의 대부분은 모닥불이나 비효율적인 난로에서 태워집니다. 목재가 너무 비싸거나 너무 멀리 떨어져 있으면 비료가 대신 연료로 연소되는 경우가 많기 때문에 이전에는 동물 거름작물 잔재물이 토양으로 되돌아갔습니다 . 아프리카남아시아 의 여러 지역에서 점점 더 보편화되고 있는 이러한 관행은 토양 비옥도를 하락시키는 악순환을 가중시킵니다.. 산허리의 나무와 초목이 제거되면 빗물 유출홍수 로 인해 토양 침식이 급속히 진행되어 땅이 사막으로 변할 수 있습니다. 따라서 전 세계적으로 매일 장작을 소비하는 현재 패턴은 환경 위기가 심화되는 데 중요한 요소입니다.

1970년대 후반부터 단순하고 저렴한 개선된 쿡스토브의 설계와 보급에 대한 많은 작업이 이루어졌습니다. 이러한 스토브는 일반적으로 모닥불에서 소비되는 장작 연료의 최대 40%, 일반적인 전통 스토브에서 소비되는 연료의 25~35%를 절약할 수 있습니다. 이 작업의 집단적 경험은 Burning Issues에 설명되어 있습니다. 스토브의 소유주 건설을 장려하기 위한 다양한 전략을 열성적으로 추구한 후, 숙련된 관찰자들은 소규모 산업이스토브 생산은 가장 유망한 경로 중 하나입니다. 이 접근 방식의 장점은 자체 건물에서 달성할 수 있는 것보다 더 나은 품질 관리와 그에 따른 더 높은 효율성 및 더 긴 스토브 수명을 포함합니다. 비용은 개당 1~5달러인 스토브는 연료를 구입하면 1~2개월 이내에 연료 절약 비용을 스스로 지불할 수 있습니다. 대부분의 연료가 수집되는 농촌 지역에서는 매우 저렴한 난로를 일부 사람들에게 여전히 판매할 수 있지만 분배 문제는 훨씬 더 어렵고 확실히 성공적인 전략은 아직 수립되지 않았습니다.

개선된 쿡스토브를 통한 연료 절약은 국가가 새로운 에너지원에 투자하는 가장 저렴한 방법인 것으로 보입니다. 장작의 35%를 절약하는 전형적인 장인 생산 쿡스토브의 가격은 5달러 미만입니다. 3개의 개선된 스토브는 한 가족의 바이오가스 플랜트(비용이 40~50배 높음)와 동일한 연료 공급 효과를 가집니다. 두 가지 모두 한 가족의 요리 연료 수요를 추가로 공급할 수 있음을 의미합니다. 전기 또는 등유 스토브의 경우 자본 투자가 더 높을 것이며, 발전 용량을 추가하고 전력망을 확장하는 데 드는 비용도 고려해야 합니다. 전기 스토브와 등유 스토브 모두 일일 연료 비용이 추가되는데, 개선된 스토브의 경우에는 전혀 비용이 들지 않습니다(개선된 효율성만으로도 모든 이득을 설명할 수 있기 때문입니다).

The secondary effects of existing cooking systems must be understood before acceptable improvements can be made. In many places, smoke from indoor cooking fires is a significant contributor to lung and eye disease. Yet this smoke also serves to dry crops hung over the cooking area and to protect thatched roofs from insect damage. In highland regions and other colder areas, the space heating function of the indoor cooking fire may need to be included in cookstove design. Successful stove promotion efforts may depend on the availability of effective alterations for these secondary functions of the cooking fire.

Experience has shown that despite the need for wood conservation on a massive scale, adoption of improved stoves cannot occur immediately for an entire nation or region. It will, instead, depend on involvement of local people in careful, systematic work which emphasizes testing and cooking methods. Existing stoves and new prototypes can be tested with a minimum of equipment. Testing techniques are covered by several of the books in this section.

Most knowledgeable people have revised their estimates of the fuel savings possible with the typical new stove. A 35% savings is now considered a realistic figure for the better stove designs. Similarly, most agree that the distribution of improved stoves alone is not going to greatly affect the rate of deforestation in most places. Nevertheless, improved cookstoves are now considered to be a cost-effective component in reforestation programs in some countries, and clearly they have a role to play in improving the quality of life by conserving family resources of cash and time, and reducing smoke in the cooking area.

Many thanks to David Bartecchi of Village Earth for the initial content.

Key Design Features

Some or all of these design features help make a stove more fuel efficient or reduce health problems associated with taditional cooking fires:

  • Long chimney or vent - to remove smoke to outdoors, and improve airflow through the fire.
  • Controllable air inflow - requires the fire to be in an enclosure with an adjustable inlet - allows reduction of burning rate to match needs.
  • Use of a material with good insulating properties, for the inside walls of the stove - usually ceramic.
  • Afterburning - mixing the flue (exhaust gas) with a small amount of new air, to allow the last remaining hydrocarbons and carbon monoxide to burn without a flame.
  • Jacketing the cooking vessel, i.e. making the hot flue travel through a narrow passage between the cooker and the pot. This implies that the pot size and cooker size must be matched.
  • Use of the flue gas heat for space heating (in cold climates) and/or water heating. To avoid leakage of flue gas into the room, a heat exchanger is needed. In an expensive product this may be a complex stainless steel device, or in a developing nation a simple metal flue pipe.[expansion needed]
  • Many societies cook only a few types of food and you should design the stove to meet their specific needs
  • If they stir a thick material, you will need a well supported base in order to keep the cooker stable
  • There is an optimal separation between the pot and the cooker to allow for the airflow to escape. Design the stove to match the pots and maintain this separation
  • If too much material is placed in the burner, not all of the hydrocarbons will be consumed, so consider limiting the amount of space for the flamable material. Also consider what type of material is burned locally when designing this burning area
  • In densely populated areas such as refugee camps, multiple households will want to share the stoves, so consider including insulated handles.
  • As always with appropriate technology, the stoves should be locally constructed with local materials, using local techniques. This way, you can seed entrepreneurs to produce, sell and repair the stoves after you leave.
  • an enclosed fire to retain the heat
  • careful design of pot holder to maximise the heat transfer from fire to pot
  • baffles to create turbulence and hence improve heat transfer
  • dampers to control and optimise the air flow
  • a ceramic insert to minimise the rate of heat loss
  • a grate to allow for a variety of fuel to be used and ash to be removed
  • metal casing to give strength and durability
  • multi pot systems to maximise heat use and allow several pots to be heated simultaneously

Much of the research and development work carried out on biomass technologies for rural areas of developing countries has been based on the improvement of traditional stoves. This was initially in response to the threat of deforestation but has also been focused on the needs of women to reduce fuel collection times and improve the kitchen environment by smoke removal. There have been many approaches to stove improvement, some carried out locally and others as part of wider programmes run by international organizations. Figure 2 below shows a variety of successful improved stove types, some small, portable stoves and others designed for permanent fixture in a household.

Improving a stove design is a complex procedure which needs a broad understanding of many issues. Involvement of users in the design process is essential to gain a thorough understanding of the user’s needs and requirements for the stove. The stove is not merely an appliance for heating food (as it has become in Western society), but is often acts as a social focus, a means of lighting and space heating. Tar from the fire can help to protect a thatched roof, and the smoke can keep out insects and other pests. Cooking habits need to be considered, as well as the lifestyle of the users. Light charcoal stoves used for cooking meat and vegetables are of little use to people who have staple diets such as Ugali, which require large pots and vigorous stirring. Fuel type can differ greatly; in some countries cow dung is used as a common fuel source, particularly where wood is scarce. Cost is also a major factor among low-income groups. Failing to identify these key socio-economic issues will ensure that a stove programme will fail. The function of an improved stove is not merely to save fuel.

Improved cook stove materials

One of the most important aspects of improved cook stove design is what materials you use.

Important considerations:

  • The material must be able to stand up to thermal cycling
  • Price: people won't buy an expensive stove
  • The material must be available (obvious, but worth saying)

Materials to consider

  • Refractory brick (designed to insulate and withstand thermal cycling)
  • Clay/Mud brick (cheep)
  • Refractory Concrete
  • Normal Concrete
  • Sheet metal (keep in mind that a stove that doesn't cause burns is very important)
  • Normal Tile
  • Insulated Tile

For combustion chambers, keep in mind that the wood can be shoved in with considerable force and the chamber should be able to stand up to some abuse

Metals:

  • Zinc has a relatively low melting temperature and should not be used for high heat applications.
  • Stainless steel can be adequate for combustion chambers
  • Cast Iron works very well but it is very expensive.

Local manufacture of stoves

Since 1982, the Kenya Ceramic Jiko (KCJ), an improved charcoal-burning stove aimed at the urban market has been developed and manufactured by large numbers of small producers. The KCJ has two main components; metal and fired clay. Both these parts are made by entrepreneurs; the metal part (cladding) being made by small-scale enterprises or individual artisans, while the clay part (liner) is manufactured by slightly larger and more organised enterprises or women’s groups. The KCJ is sold by the artisans directly to their customers or through commercial outlets such as retail shops and supermarkets. The stove was initially promoted heavily to develop the market, by the NGO KENGO and by the Kenyan Ministry of Energy, through the mass media, market demonstrations and trade fairs. As a result of this substantial promotion, there are now more than 200 artisans and micro-enterprises manufacturing some 13,600 improved stoves every month. To date, it is estimated that there are some 700,000 such stoves in use in Kenyan households. This represents a penetration of 16.8% of all households in Kenya, and 56% of all urban households in the country.[4]

Ongoing research and development

Groups including the Kobus Venter's Vuthisa Technologies[5] and EWB San Francisco Professionals Chapter[6] are doing research into optimizing such stoves, including using briquettes made from waste biomass (e.g. agricultural waste) with a simple briquette press.

The fuel used can have a great impact on the smoke produced, as well as affecting the environmental impact. CharcoalW is much cleaner burning than wood or dung, but is usually made from wood.

Amy SmithW has done work on producing charcoal from other forms of biomass. To make the biomass stick together, a binder is used. (Another method of making briquettes more cohesive is to leave the biomass in water for a couple of days to decompose slightly.) The choice of biomass depends on what is widely available, but includes bagasseW (sugar cane waste) bound with a paste of cassavaW root (also called manioc or tapioca); and wheat or rice straw bound with a small amount of dung, in areas where pure dung is normally burnt.[7]

A program called CFD-GEOM can be used to model cookstove designs.

The Wood gasification stove is probably the most efficient stove design possible.

Different Improved Cookstove Designs

Notes and references =

  1. World Health Organization
  2. Randomized Exposure Study of Pollution Indoors and Respiratory Effects (RESPIRE) Trial
  3. http://www.peprimer.com/stove.html#SECTION5
  4. Source: Dominic Walubengo, Stove Images, 1995
  5. Vuthisa Technologies is a small company in Pietermaritsburg, Kwa Zulu Natal, South Africa, and Kobus Venter discussed (or discusses) the development of the design on the Biomass cooking stoves lists.[expansion needed]
  6. EWB-SFP Appropriate Technology Design Team's blog, with a strong focus on improved stoves. See also Darfur Cookstoves - Updates May-December 2006
  7. MIT's Amy Smith on third-world engineering: TEDTalks - Video on YouTube.

See also

External links

Discussion[View | Edit]

Cookies help us deliver our services. By using our services, you agree to our use of cookies.