Osdesign.png
Project data
Authors Oberloier S.
Joshua M. Pearce
Location Michigan, USA
Status Designed
Modelled
Prototyped
Verified
Verified by MOST
Links https://www.academia.edu/35603319/General_Design_Procedure_for_Free_and_Open_Source_Hardware_for_Scientific_Equipment%7C
https://www.mdpi.com/2411-9660/2/1/2/htm%7C
OKH Manifest Open Know-How Manifest Download
Upload your project too!

Distributed digital manufacturing of free and open-source scientific hardware (FOSH) used for scientific experiments has been shown to in general reduce the costs of scientific hardware by 90–99%. In part due to these cost savings, the manufacturing of scientific equipment is beginning to move away from a central paradigm of purchasing proprietary equipment to one in which scientists themselves download open-source designs, fabricate components with digital manufacturing technology, and then assemble the equipment themselves. This trend introduces a need for new formal design procedures that designers can follow when targeting this scientific audience. This study provides five steps in the procedure, encompassing six design principles for the development of free and open-source hardware for scientific applications. A case study is provided for an open-source slide dryer that can be easily fabricated for under $20, which is more than 300 times less than some commercial alternatives. The bespoke design is parametric and easily adjusted for many applications. By designing using open-source principles and the proposed procedures, the outcome will be customizable, under control of the researcher, less expensive than commercial options, more maintainable, and will have many applications that benefit the user since the design documentation is open and freely accessible.

Parametric Open Source Slide Dryer
5 Easy Steps to Design Free and Open-Source Hardware for Science

Source

See also[edit | edit source]

Media[edit | edit source]

Cover-designs-v2-i1.png.jpg
Page data
Type Project, Device
Keywords open source hardware, open hardware, reprap, 3d printing, openscad, customization, open science hardware, osch, free and open-source hardware, fosh, free and open-source software, custom designs, distributed manufacturing, p2p, p2p manufacturing, open design, scientific equipment, open scientific hardware, slide dryer, osat
Authors Joshua M. Pearce
Published 2018
License CC-BY-SA-4.0
Impact Number of views to this page and its redirects. Updated once a month. Views by admins and bots are not counted. Multiple views during the same session are counted as one. 263
Cookies help us deliver our services. By using our services, you agree to our use of cookies.