mNo edit summary
mNo edit summary
Line 9: Line 9:
* Ismo T. S. Heikkinen, Christoffer Kauppinen, Zhengjun Liu, Sanja M. Asikainen, Steven Spoljaric, Jukka V. Seppälä, Hele Savin, and Joshua M. Pearce. Chemical Compatibility of Fused Filament Fabrication -based 3-D Printed Components with Solutions Commonly Used in Semiconductor Wet Processing.  ''Additive Manufacturing'' 23, pp. 99-107 (2018). DOI: https://doi.org/10.1016/j.addma.2018.07.015 [https://www.academia.edu/37171248/Chemical_Compatibility_of_Fused_Filament_Fabrication-based_3-D_Printed_Components_with_Solutions_Commonly_Used_in_Semiconductor_Wet_Processing open access]  
* Ismo T. S. Heikkinen, Christoffer Kauppinen, Zhengjun Liu, Sanja M. Asikainen, Steven Spoljaric, Jukka V. Seppälä, Hele Savin, and Joshua M. Pearce. Chemical Compatibility of Fused Filament Fabrication -based 3-D Printed Components with Solutions Commonly Used in Semiconductor Wet Processing.  ''Additive Manufacturing'' 23, pp. 99-107 (2018). DOI: https://doi.org/10.1016/j.addma.2018.07.015 [https://www.academia.edu/37171248/Chemical_Compatibility_of_Fused_Filament_Fabrication-based_3-D_Printed_Components_with_Solutions_Commonly_Used_in_Semiconductor_Wet_Processing open access]  
* Aubrey L. Woern, Joseph R. McCaslin, Adam M. Pringle, and Joshua M. Pearce. RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament. ''HardwareX'' 4C (2018) e00026 doi: https://doi.org/10.1016/j.ohx.2018.e00026 [https://www.academia.edu/36721604/RepRapable_Recyclebot_Open_source_3-D_printable_extruder_for_converting_plastic_to_3-D_printing_filament open access]
* Aubrey L. Woern, Joseph R. McCaslin, Adam M. Pringle, and Joshua M. Pearce. RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament. ''HardwareX'' 4C (2018) e00026 doi: https://doi.org/10.1016/j.ohx.2018.e00026 [https://www.academia.edu/36721604/RepRapable_Recyclebot_Open_source_3-D_printable_extruder_for_converting_plastic_to_3-D_printing_filament open access]
* Wijnen, B., Sanders, P. & Pearce, J.M. Improved model and experimental validation of deformation in fused filament fabrication of polylactic acid. ''Progress in Additive Manufacturing'' (2018). https://doi.org/10.1007/s40964-018-0052-4 [http://em.rdcu.be/wf/click?upn=lMZy1lernSJ7apc5DgYM8dxkCJ58uC6sUJBELmvXe-2Bg-3D_0kPq7H8U8oZ-2BbewUQbTcX2-2Baa1e0xnHTsgPmOBwhRG-2FOEB-2BtNDBEW60E-2FPhOq8mmOZY3DoEmWUNqLX9MfuJrExZrRrtQpEBtj4rjQSEn-2F58bvHjZNRH1dMZLHUXym89-2FzDEkr4NJeQttTbDjGv7UY3MluvUUdkEgddTVZGUYEsN7u2x1CNIad7PjmRmTs0z9vFUgFlPQAPpoO-2BvQE3QMOMkn-2BJP68exmch452TnZx3OiDOC0vYOLcZZs8oaiSSCzr4ozoWoVZ1PQOgHipb3iEA-3D-3D temp open access]
* Wijnen, B., Sanders, P. & Pearce, J.M. Improved model and experimental validation of deformation in fused filament fabrication of polylactic acid. ''Progress in Additive Manufacturing'' 3(4), pp. 193–203 (2018). https://doi.org/10.1007/s40964-018-0052-4 [https://www.academia.edu/37894633/Improved_Model_and_Experimental_Validation_of_Deformation_in_Fused_Filament_Fabrication_of_Poly_Lactic_Acid open access]
*  Saravanan Vanal Krishnan, Sivakumar Palanivelu, Muthu Manickam Muthukaruppan Ambalam, Ragavendran Venkatesan, Muthukumar Arivalagan, Joshua M. Pearce, Jeyanthinath Mayandi, [https://doi.org/10.1515/zpch-2017-1075 Chemical Synthesis and Characterization of Nano Alumina, Nano Composite of Carbon–Alumina and Their Comparative Studies] ''Zeitschrift für Physikalische Chemie'', 232(12), (2018) 1827–1842. DOI: https://doi.org/10.1515/zpch-2017-1075   
*  Saravanan Vanal Krishnan, Sivakumar Palanivelu, Muthu Manickam Muthukaruppan Ambalam, Ragavendran Venkatesan, Muthukumar Arivalagan, Joshua M. Pearce, Jeyanthinath Mayandi, [https://doi.org/10.1515/zpch-2017-1075 Chemical Synthesis and Characterization of Nano Alumina, Nano Composite of Carbon–Alumina and Their Comparative Studies] ''Zeitschrift für Physikalische Chemie'', 232(12), (2018) 1827–1842. DOI: https://doi.org/10.1515/zpch-2017-1075   
* John J. Laureto and Joshua M. Pearce. [https://doi.org/10.1016/j.polymertesting.2018.04.029 Anisotropic mechanical property variance between ASTM D638-14 type I and type IV fused filament fabricated specimens]. ''Polymer Testing'' 68: 294-301 (2018). DOI: 10.1016/j.polymertesting.2018.04.029 [https://www.academia.edu/36496554/Anisotropic_Mechanical_Property_Variance_Between_ASTM_D638-14_Type_I_and_Type_IV_Fused_Filament_Fabricated_Specimens open access]
* John J. Laureto and Joshua M. Pearce. [https://doi.org/10.1016/j.polymertesting.2018.04.029 Anisotropic mechanical property variance between ASTM D638-14 type I and type IV fused filament fabricated specimens]. ''Polymer Testing'' 68: 294-301 (2018). DOI: 10.1016/j.polymertesting.2018.04.029 [https://www.academia.edu/36496554/Anisotropic_Mechanical_Property_Variance_Between_ASTM_D638-14_Type_I_and_Type_IV_Fused_Filament_Fabricated_Specimens open access]

Revision as of 13:29, 2 December 2018

Cookies help us deliver our services. By using our services, you agree to our use of cookies.