This project details an open-source colorimeter, which is made from open source electronics and 3-D printable components. This is part of a larger project to reduce the cost of scientific equipment using open-source hardware.[1]
Source
Anzalone GC, Glover AG, Pearce JM. Open-Source Colorimeter. Sensors. 2013; 13(4):5338-5346. doi:10.3390/s130405338 open access
Abstract
The high cost of what have historically been sophisticated research-related sensors and tools has limited their adoption to a relatively small group of well-funded researchers. This paper provides a methodology for applying an open-source approach to design and development of a colorimeter. A 3-D printable, open-source colorimeter utilizing only open-source hardware and software solutions and readily available discrete components is discussed and its performance compared to a commercial portable colorimeter. Performance is evaluated with commercial vials prepared for the closed reflux chemical oxygen demand (COD) method. This approach reduced the cost of reliable closed reflux COD by two orders of magnitude making it an economic alternative for the vast majority of potential users. The open-source colorimeter demonstrated good reproducibility and serves as a platform for further development and derivation of the design for other, similar purposes such as nephelometry. This approach promises unprecedented access to sophisticated instrumentation based on low-cost sensors by those most in need of it, under-developed and developing world laboratories.
Keywords
open source; open-source hardware; colorimetery; COD; Arduino; RepRap; 3-D printer; open-source sensor; chemical oxygen demand; open-source colorimeter
Introduction
Colorimetric analytical methods are likely to be the most commonly applied methods for determining the concentration of dissolved species. Many dissolved species absorb light of a particular wavelength and the amount absorbed as the light passes through a given length of solution increases with increasing concentration the species; higher concentrations absorb more light than do lower concentrations. The relationship between absorption and concentration is defined by the Beer-Lambert law[2].
A colorimeter or a spectrophotometer is employed to measure absorption at a specific wavelength. Light is usually filtered to permit only a narrow band of light at the absorbance peak wavelength for the species measured. The apparatus typically reports results in concentration units but also reports absorbance units or transmittance.
Design files: http://www.thingiverse.com/thing:45443
Firmware: http://github.com/mtu-most/colorimeter
BOM
- Arduino Uno
- Escudo LCD Adafruit (http://www.adafruit.com/products/772)
- LED com pico em torno de 606nm (como: LEF3833 http://www.jameco.com/Jameco/Products/ProdDS/333665.pdf)
- Um resistor adequado para o LED que você escolher
- Sensor de luz para frequência TSL230R
- Proto board (como: http://radioshack.com/product/index.jsp?productId=2102845&znt_campaign=Category_CMS&znt_source=CAT&znt_medium=RSCOM&znt_content=CT2032230)
- Condutores (Cabo Cat 5 funciona muito bem)
- Filamento PRETO ABS ou PLA
- 12 parafusos M3 (quase qualquer comprimento; 10-12mm é bom)
- 12 nozes M3
- Arruelas M3 de 20 M3
Instruções
- Imprima as peças e limpe-as para que tudo se encaixe bem. Empurre as porcas M3 em suas ranhuras apropriadas em cada canto do corpo da caixa - ranhuras abertas para o interior.
- Corte a placa proto até o tamanho (cerca de 27mm x 46mm) e faça furos para combinar com os laterais da caixa.
- Conecte livremente as placas ao interior da caixa com alguns parafusos cada um e empurre o porta-cuvette no lugar (sem tampa) e marque os locais aproximados onde o sensor e o LED devem ser colocados nas placas para se alinhar com as janelas do suporte de cuvette.
- Remova as placas da caixa e solde os componentes para suas respectivas placas nos pontos marcados. Deixe os cabos de LED um pouco longos para que ele possa ser movido para apontar o feixe através do orifício.
- Solde os condutores pelo esquema. (Os pinos io podem ser soldados diretamente no escudo LCD se você for cuidadoso, caso contrário, serão necessários meios diferentes, como não usar o escudo como escudo.)
- Coloque as placas de volta no caso, desta vez com firmeza.
- Baixe e instale o firmware no Arduino.
- Encaixe o escudo LCD e ligue o dispositivo (a verruga de parede excedente da tensão apropriada ou da energia USB funcionará).
- Coloque o suporte de cuvette de volta na posição (sem tampa) e use o sistema de menu para selecionar "Calibrar". O LED acenderá por alguns segundos - certifique-se de que a maioria da luz passe o mais reto possível através das janelas do suporte de cuvette e impinge sobre o sensor. Se o LED/sensor estiver alto ou baixo, remodele as janelas de cuvette com um pequeno arquivo de cauda de rato ou broca de tamanho adequado.
- Depois que o LED estiver devidamente apontado, remova o suporte de cuvette e alinhe e afixe a tampa na caixa com quatro parafusos E arruelas M3.
- Empurre o suporte de cuvette através da abertura na tampa e verifique se a tampa se encaixa bem no recesso.
- Siga o protocolo apropriado para calibração (ainda a ser incorporado no firmware - próximo).
Aplicativos
Mídia
- Joshua M. Pearce, "A impressão 3D de código aberto permite imprimir seus próprios dispositivos de saúde mais baratos", Conversation, 28 de fevereiro de 2014.
- Impressão 3D no laboratório- Biolegend
Veja também
- Laboratório de código aberto
- Plataforma de teste de qualidade de água móvel de código aberto
- Sistema fotométrico de código aberto para quantificação de nitrato enzimático
- Óptica de código aberto
- Equipamentos de pesquisa de construção com hardware gratuito de código aberto
- Ciência de código aberto
- Impressão 3D de código aberto do OSAT
- Hardware de código aberto
Referências
- ↑ Pearce, Joshua M. 2012. "Equipamento de pesquisa de construção com hardware gratuito e de código aberto." Ciência 337 (6100): 1303-1304. [1]