Foreword[edit | edit source]

This is a literature review page on the topic of PV+LED Street lights. This page covers about the study and analysis of solar powered LED lights against the conventional incandescent bulbs used as street lights especially in the snowy regions.

Background[edit | edit source]

In geographical regions where there is abundant sunlight over a major part of the year, solar powered LED lights have proved to be an excellent alternative to the conventional lighting systems on highways and streets. But in regions which face snow fall with less sunlight for most or half of the year, installation of photovoltaic panels to yield similar advantages is greatly uncommon. It seems difficult to produce efficient benefits in terms of effort and money. So, this project deals with this impossibility to make it possible!

About the project[edit | edit source]

This project is a step-by-step strategy to firstly understand the geographical and climatic conditions of the region under study, evaluate the available technology, apprehend the commercial aspects of installation in that community, then do the technical viability and the economics, and finally draw out the best possible solution for a profitable and sustainable method for the installation of PV-LED street lights.

Search List[edit | edit source]

Google Scholar
  1. Solar Photovoltaic cells.
  2. PV and Snow
  3. PV LED Lighting
  4. Commercial review of solar street light
  5. SAM software for photovoltaics
  6. Cost evaluation for installation of Solar street lighting
  7. Solar power supply in upper peninsula
  8. Smart Street Lighting

Literature Citation List[edit | edit source]

Effects of snow on Solar and PV

1. Prediction of Energy Effects on Photovoltaic Systems due to Snowfall Events Andrews, Rob W., and Joshua M. Pearce. “Prediction of Energy Effects on Photovoltaic Systems Due to Snowfall Events.” 2012 38th IEEE Photovoltaic Specialists Conference, 2012. doi:10.1109/PVSC.2012.6318297. [1]

  • Modules of C-Si installed at different angles in an Open Source Outdoors Test Field (OSOTF) and snowfall data is collected from Kingston climate weather station for the winters of 2010/2011 and 2011/2012.
  • Data from two other solar firms SF1 and SF2 collected hourly: DC power input to each inverter, Solar irradiation and module temperature measurements.
  • Assumption: Upon performing a sensitivity analysis using the RMSE of the model, relative humidity and wind speed were considered not significant and the magnitude of energy gain or loss from snowfall is proportional to the mean solar irradiation in a given day.
  • A comparison of the derived model coefficients from the three sources used. In order to test the applicability of this approach, the snow losses for SF2 were determined using the coefficients derived from SF1 and the OSOTF.
  • Predictions can be made by integrating data from a geographically dissimilar system of a similar configuration by using this proposed method.

2. The Effects of Snowfall on Solar Photovoltaic Performance

Andrews, Rob W., Andrew Pollard, and Joshua M. Pearce. “The Effects of Snowfall on Solar Photovoltaic Performance.” Solar Energy 92 (2013): 84–97. doi:10.1016/J.SOLENER.2013.02.014. [2]

  • Snowfall accumulation is affected by ambient temperature (above and below -3◦C), wind speeds, inclination from the horizontal, and surface properties.
  • Giddings and LaChappelle and Bouger-Lambert law infers that approximately 20% of incident radiation will be available at 2cm snow depth, and 3-4% is available at 10cm depth.
  • Transmitted light from snow layer is short-wave radiation causes shedding phenomenon of snow due to its insulation properties same as a fiber glass, thus retain heat and form water later leading to snow slide.
  • Energy influx to a snow-covered module can occur in three ways:
1. Diffusion of short wave radiation through the snow pack,
2. Albedo reflection to the exposed rear of the module,
3. Conduction from other parts of the PV array that are not covered with snow.
  • 70 modules of amorphous silicon and crystalline silicon at arranged at 5◦, 10◦, 15◦, 20◦, 40◦, and 60◦ are monitored for short-circuit current and back temperature.
  • change in the short circuit current will have a proportional change on the power output of a module, as it represents the level of light reaching the modules, making it an appropriate performance metric, while effectively isolating against the effects of temperature on the results.
  • Yearly snow effect is defined as the summation of the difference between the actual and synthetic output.
  • Albedo effect increases with module inclination angle,which is due to the increased view factor from the module to the snow surface
  • Lower temperature and higher relative humidity will tend to increase the time to shed.

3. Photovoltaics and snow: An update from two winters of measurements in the SIERRA

Tim Townsend, BEW Engineering, San Ramon, CA, U.S.A. and Loren Powers, BEW Engineering, San Ramon, CA, U.S.A. 19 April 2012 [3]

  • Three pairs of photovoltaic (PV) modules at fixed south-facing tilt angles of 0°, 24° and 39° were installed in Truckee, CA (near Lake Tahoe) at the beginning of the 2009–10 winter. And it receives 200 inches per year (5 m) of snow. Three are manually cleaned and heated thermostatically while other three are bordered and allowed to shed naturally.
  • Snow losses are gauged as the difference in monthly amp-hours between the clean and uncleaned modules
  • In 2009-10, wintertime energy losses of 40–60% and annual energy losses from 12–18% were noted at normal snow fall.
  • Model Development equation accounts for ground interference, air temperature, plane of array insolation and relative humidity.
  • In addition to the BEW coefficients and site latitude, the only data needed to run the model are: Monthly snowfall, Number of snow events per month, Average air temperature, Plane of array insolation, Average relative humidity. The monthly loss estimates in the table given can be used directly as inputs to popular PV simulation programs such as PVSyst.

4. Energy efficiency and renewable energy under extreme conditions: Case studies from Antarctica

TinaTin Antarctic and Southern Ocean Coalition, BP 80358, 45163 Olivet, CEDEX 3, France, Benjamin K.Sovacool, National University of Singapore, Singapore, David Blake British Antarctic Survey, United Kingdom, Peter Magill, Australian Antarctic Division, Australia, Saad, Alfred Wegener Institute, Germany NaggareSvenLidstrom, Swedish Polar Research Secretariat, Sweden, Kenji Ishizawag National Institute of Polar Research, Japan. Johan Berte, International Polar Foundation, Belgium. Received 20 July 2009, Accepted 14 October 2009, Available online 3 November 2009. [4]

  • Solar energy and combined systems : In most cases, solar power is combined with wind turbines and diesel generators to meet energy needs in Antarctica.
  • Field camps and instrumentation: Power systems based upon solar panels and sometimes small wind turbines allow instruments to collect data continuously and to connect to satellites for remote access and data transfer
  • Applications: Four 35 W solar panels and a 12 V battery provide the power for a weighbridge that weighs each penguin as it leaves its colony.
  • Costs and benefits of analysis for setting up renewable energy sources in Antarctica.

5. A Low Cost Method of Snow Detection on Solar Panels and Sending Alerts

Seyedali Meghdadi, Electrical Engineering Faculty, Memorial University of Newfoundland, NL,and Tariq Iqbal, Faculty of Engineering and Applied Science, Memorial University of Newfoundland Canada, Journal of Clean Energy Technologies, Vol. 3, No. 5, September 2015. [5]

  • Arduino Uno software for design and modelling the circuit.
  • Algorithm and system overview
Effects of dust on PV systems

6.Effect of dust, humidity and air velocity on efficiency of photovoltaic cells

Mekhilef, S., Saidur, R. and Kamalisarvestani, M., 2012. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and sustainable energy reviews, 16(5), pp.2920-2925.

  • AM1.5 is addressed as the standard test condition in solar cell design
  • PV cell efficiency
  • To maximize the output power and the efficiency of solar cells simply the Voc, Isc and FF should be boosted up.
  • Effect of dust: xcessive dust accumulation results in deterioration of solar cell's quality and fill factor. Dust promotes dust, so that the performance of PV modules declines exponentially with more dust pile up
  • Effect of humidity: Failure at cell interconnections or cracked cells happens in crystalline silicon cells and failure at scribe lines is the dominant cause of cell thin film modules degradation
  • Effect of wind velocity: As the air velocity increases the cell temperature will drop and better PV cell efficiency will be resulted.

7. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations

Mani, M. and Pillai, R., 2010. Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and sustainable energy reviews, 14(9), pp.3124-3131.

  • The characteristics of dust settlement on PV systems are dictated by : the property of dust and the local environment.
  • The property of dust, its accumulation/aggregation and the surface finish of the settling surface (PV) influence efficiency.
  • Dust settlement decreases with increase in tilt from the horizontal
  • Tilt angles less than 30° the dust deposition decreases.
  • The developed empirical correlation was accurate to ±6% and allowed for calculation transmittance reduction in glass transmittance for a given tilt angle and exposure (days) to the atmosphere.
Effect of tilt and orientation on Solar and PV energy systems

8. Orientation and Tilt Dependence of a Fixed PV Array Energy Yield Based on Measurements of Solar Energy and Ground Albedo – a Case Study of Slovenia

By Jože Rakovec, Klemen Zakšek, Kristijan Brecl, Damijana Kastelec and Marko Topic, Submitted: October 27th 2010Reviewed: April 6th 2011Published: August 1st 2011 DOI: 10.5772/18386 [6]

  • Considering only direct solar irradiation, the optimal tilt angle during the year can be calculated as φ - δs, where δs is the declination of the Sun.
  • Joule losses in wirings of PV modules into PV arrays and inverter losses account to losses in output power of PV system.
  • Long-term measured meteorological values should be used to obtain reliable results on PV yield
  • Measured irradiation values are the most important parameter in photovoltaics,
  • The albedo changes significant during winters only as the ground covered by snow is often even brighter than the sky.
Grid connected PV system performance

9. PV system monitoring and performance of a grid connected PV power station located in Manchester-UK

E. M. Natsheh, E. J. Blackhurs, A. Albarbar, Manchester Metropolitan University, School of Enginerring, Manchester M1 5GD, UK, ate of Conference: 6-8 Sept. 2011 Date Added to IEEE Xplore: 23 January 2012, Electronic ISBN: 978-1-84919-536-2, INSPEC Accession Number: 12328415, DOI: 10.1049/cp.2011.0121. [7]

  • The developed monitoring system enables system degradation to be identified via the calculation of the residual difference in power generation between the computer model and the actual PV power plant. and irradiance, temperature and system output power are gathered from a 28.8kW grid connected solar power system.
  • Mathematical model consists of a photo current, diode, series resistor and a parallel resistor.
  • The photocurrent is directly proportional to the light falling on the cell. During darkness, the solar cell is not active; it works as a diode. It produces either voltage or current.
  • The major inputs for the proposed PV model were solar irradiation, PV panel temperature and PV manufactures data sheet information. In this study, the Astronergy HSM6610P225 PV module is taken as example.
  • With increased solar irradiance there is an increase in maximum power output and short circuit current.
  • with an increase in the cell temperature, maximum power output decreases whilst the short circuit current increases.

10. Grid-connected versus stand-alone energy systems for decentralized power—A review of literature

Deepak Paramashivan, Kaundinya P. Balachandra, N. H. Ravindranath, Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560012, India Received 30 September 2008, Revised 13 January 2009, Accepted 12 February 2009, Available online 6 March 2009. [8]

  • Explains the differences between Grid connected (GC) and stand alone (SA) energy systems
  • Technological feasibility of GC and SA.
  • Environmental and economic feasibility of GC and SA.
  • Designing of GC and SA system.
  • Policy measures and barriers for implementation of GC and SA energy systems
Use of Mirrors and reflectors in PV systems 

11. Performance Enhancement of PV Solar System by Mirror Reflection Rizwanur Rahman, and Md. Fayyaz Khan Department of EEE, United International University, Dhaka, Bangladesh. 6th International Conference on Electrical and Computer Engineering ICECE 2010, 18-20 December 2010. [9]

  • Methods for improving performance of PV
  • Setup of Mirrors and their angles


JOSEPH W. BOLLENTIN and RICHARD D. WILK, Department of Mechanical Engineering, Union College, Steinmetz Hall, Schenectady, NY 12308-231 l, U.S.A. Solar Energy Vol. 55, No. 5, pp. 343 354, 1995, Copyright © 1995 Elsevier Science Ltd, Printed in the U.S.A. [10]

  • Projection of system into the north-south plane for determining width ratios to evaluate reflected irradiation or shading.
  • Projection of system into the horizontal plane for determining the area of collector receiving reflected radiation or the area of collector being shaded by the reflector
  • Sky and ground reflected diffuse.

13. Optimization of operational and design parameters of plane reflector-tilted flat plate solar collector systems

H.M.S.Hussein, G.E.Ahmad M.A. Mohamad Solar Energy Department, National Research Centre, El-Tahrir Street, Dokki, Giza, Egypt. Energy Volume 25, Issue 6, June 2000, Pages 529-542 [11]

  • The area of the tilted collector illuminated by reflected beams from the reflector depends on the reflector-collector system geometry and Sun position.
  • Various reflector-collector system and their collector at its optimum tilt angle.
  • The South facing reflector provides higher yearly solar energy collection than the North facing one.

14. The enhancement of energy gain of solar collectors and photovoltaic panels by the reflection of solar beams

M.D.JPucar and A.RDespic, Institute of Architecture and Urban Planning of Serbia, Bul. revolucije 73/II, 11 000 Beograd, Yugoslavia Institute of Technical Science of the Serbian Academy of Science and Arts, Knez Mihailova 35, 11 000 Beograd, Yugoslavia. Energy Volume 27, Issue 3, March 2002, Pages 205-223 [12]

  • different types of collectors/photovoltaic panels using reflection of sunbeams.
  • Irradiance and energy gain by PV panels.
  • Inclination of the receiving surface led per se to increased irradiance and energy gain compared to the situation where the receiving surface was horizontal.

15. Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector

B.J.Huang, F.S. Sun, Department of Mechanical Engineering, National Taiwan University, Taipei 106, Taiwan, ROC Energy Conversion and Management Volume 48, Issue 4, April 2007, Pages 1273-1280. [13]

  • Design: The conventional one axis sun tracking system requires continuous tracking using feedback or open loop control
  • There are three touch switches mounted on the transmission gear of the frame for signal outputting to the control circuit and thus determines the stopping angle.
  • The circuit will detect the signal as well as the relative sun position and actuate the motor to move to the next position, which faces the sun more closely.
  • Analysis of total solar radiation incident upon the PV at various design parameters and PV tilt angles.

16. Solar thermal collector augmented by flat plate booster reflector: Optimum inclination of collector and reflector

HiroshiTanaka, Department of Mechanical Engineering, Kurume National College of Technology, Komorino, Kurume, Fukuoka 830-8555, Japan, Applied Energy Volume 88, Issue 4, April 2011, Pages 1395-1404. [14]

  • Daily solar radiation increases with an increase in collector inclination in winter, and decreases with an increase in collector inclination in summer, since the solar altitude angle is high in summer and low in winter.
Technical and Economic viability of PV

17. Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems

PaulDenholm, National Renewable Energy Laboratory, 901 D Street, S.W., Suite 930, Washington, DC 20024, USA Energy Policy, Robert M.Margolis, National Renwable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401, USA Volume 35, Issue 5, May 2007, Pages 2852-2861, Received 20 June 2006, Accepted 3 October 2006, Available online 27 November 2006 [15]

  • Impact of PV on Electric power system.
  • Flexibility of power systems on the basis resources.
  • Dealing with surplus or excess PV output.
  • PV capacity factors as a function of PV penetration

18. Realistic generation cost of solar photovoltaic electricity

Parm Pal Singh and Sukhmeet Singh, School of Energy Studies for Agriculture, Punjab Agricultural University, Ludhiana, Punjab – 141004, India, Renewable Energy Volume 35, Issue 3, March 2010, Pages 563-569, Received 2 March 2009, Accepted 26 July 2009, Available online 1 September 2009. [16]

  • Specific Initial Investment: A term called “specific initial investment (Cs)” has been defined as the ratio of price of SPV system per unit rated capacity (Pr) to specific electric output (Es) at a given place
  • Payment and loan methods and suggestions.

19. The Market Value and Cost of Solar Photovoltaic Electricity Production

Borenstein, S. (2008). The Market Value and Cost of Solar Photovoltaic Electricity Production. UC Berkeley: Center for the Study of Energy Markets. Retrieved from [17]

  • Valuing time and varying solar PV power analysis
  • Pricing of Solar PV energy
  • Significance of user location in Pricing.

20. Grid parity and self-consumption with photovoltaic systems under the present regulatory framework in Spain: The case of the University of Jaén Campus

D.L.Talavera, la Casa, E. Muñoz-Cerón, G.Almonacid, IDEA Research Group (Investigación y Desarrollo de Energía Solar), University of Jaén Campus las Lagunillas s/n, 23071 Jaén, Spain, Renewable and Sustainable Energy Reviews Volume 33, May 2014, Pages 752-771 [18]

  • Consumption and demand of University
  • Estimation of required energy
  • losses and generation comparision study
  • Profitability

21. Economical Design of Utility-Scale Photovoltaic Power Plants With Optimum Availability

Zahra Moradi-Shahrbabak, Student Member, IEEE, Ahmadreza Tabesh, Member, IEEE, and Gholam Reza Yousefi, Member, IEEE. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 61, NO. 7, JULY 2014 [19]

  • Basic topological designing
  • Availability estimation of PV
  • Economic design of PV and inverters at optimum availability

22. What are the barriers and incentives for community-owned means of energy production and use? Gordon Walker, Department of Geography, Lancaster Environment Centre, Lancaster University, Farrer Avenue, Lancaster LA1 4YQ, UK Energy Policy Volume 36, Issue 12, December 2008, Pages 4401-4405 [20]

  • Different legal and financial models of ownership : Cooperatives, Community charities, Development trusts and Shares owned by a local community organisation.
  • Incentives for community ownership: Local income and regeneration (through sales of energy), Local approval and planning permission, Local control, Lower energy costs and reliable supply, Ethical and environmental commitment and Load management.
  • Barriers: legal conditions, economic and technical viability, liaison, long return periods leading to subsidized funding, lack of expertise to manage income-generating potential,
  • Future Prospects on present barriers and incentives.

23. The transformation of southern California's residential photovoltaics market through third-party ownership

Easan Drury, Mackay Miller, Donna Heimiller, and Thomas D. Perry IV , Strategic Energy Analysis Center, National Renewable Energy Laboratory, 1617 Cole Blvd, RSF 300, Golden, CO 80401, USA Charles M. Macal, Diane J. Graziano, and Jonathan Ozik, Center for Complex Adaptive Agent Systems Simulation, Argonne National Laboratory, Argonne, IL 60439, USA Energy Policy Volume 42, March 2012, Pages 681-690 [21]

  • Residential PV adoption, population demographics, and voting and methodology used for statistical analysis
  • evolution of California PV markets and PV related policy
  • PV adoption trends: customer owned PV adoption and third-party owned PV adoption
  • policy implications: decreasing PV prices in addition to the reduction or removal of several adoption barriers through the introduction of third-party PV products encouraged other communities to own PV technology.
  • Third-party PV products are increasing total PV market demand by reaching new customers.

24. Cost-Effective Hundred-Year Life for Single-Phase Inverters and Rectifiers in Solar and LED Lighting Applications Based on Minimum Capacitance Requirements and a Ripple Power Port

Krein, P.T. and Balog, R.S., 2009, February. Cost-effective hundred-year life for single-phase inverters and rectifiers in solar and LED lighting applications based on minimum capacitance requirements and a ripple power port. In Applied Power Electronics Conference and Exposition, 2009. APEC 2009. Twenty-Fourth Annual IEEE (pp. 620-625). IEEE. [22]

  • The minimum energy storage requirement is linked to a minimum capacitance requirement for converters that use capacitance energy storage.
  • A ripple power port allows a designer to make a choice of capacitor voltage independent of system voltages, which helps to decide the selection of modest film capacitor.
  • Solutions for time-varying energy storage for single-phase power conversion: Passive Filter sizing and Active Filter sizing.
  • Hundred Year Operating Life

25. Economic feasibility of solar-powered led roadway lighting

Wu, M.S., Huang, H.H., Huang, B.J., Tang, C.W. and Cheng, C.W., 2009. Economic feasibility of solar-powered led roadway lighting. Renewable energy, 34(8), pp.1934-1938. [23]

  • The cost comparison of LED lighting using grid and solar power with the conventional mercury lamps.
  • Design of the solar-powered LED roadway lighting using high-power LED luminaire (100 W) and estimates the installation cost for a 10 km highway with 2 lanes.
  • Energy saving and economic analysis
  • the lighting energy can be saved about 75% compared to the mercury lamp and LED is suitable for solar lighting.
  • The payback time for the excess investment of the whole lighting system is 2.2 years for LED using grid power and 3.3 years for LED using solar-powered
  • The LED fixture lifetime can exceed 10 years,

26. The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy

Dincer, F., 2011. The analysis on photovoltaic electricity generation status, potential and policies of the leading countries in solar energy. Renewable and Sustainable Energy Reviews, 15(1), pp.713-720.

  • World photovoltaic industry has an average growth rate of 49.5% over the past 5 years.
  • In last decade due to improvements in the efficiency of the panels and manufacturing methods, the payback times were reduced to 3–5 years, depending on the sunshine available at the installation site.
  • Ways to reduce cost of PV.
  • illustration of trends in Europe, Asia and USA.

27. Development of high-performance solar LED lighting system

Huang, B.J., Wu, M.S., Hsu, P.C., Chen, J.W. and Chen, K.Y., 2010. Development of high-performance solar LED lighting system. Energy Conversion and Management, 51(8), pp.1669-1675. [24]

  • If the MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%
  • Loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring.
  • Development of battery charge and discharge control system
  • Energy loss and reliability of PWM-driven LED
  • The High-efficiency charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO (near-maximum-power-point-operation) design, a PWM battery charge control, and a PWM battery discharge control to drive the LED.

28. Solution to enhance the acceptability of solar-powered LED lighting technology

Pode, R., 2010. Solution to enhance the acceptability of solar-powered LED lighting technology. Renewable and sustainable energy Reviews, 14(3), pp.1096-1103. [25]

  • Kerosene fuel lighting and associated health risks.
  • Solar Powered CFL Lighting and its drawbacks
  • Solar powered LED lighting and its economics and viability analysis.
  • Barrier and proposals to consumer acceptability of solar-powered lighting
  • Various Bussiness Models for implementation of Solar powered lighting.

29. A comprehensive study of solar power in India and World

Sharma, A., 2011. A comprehensive study of solar power in India and World. Renewable and Sustainable Energy Reviews, 15(4), pp.1767-1776. [26]

  • Concentrating solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam, which will be used as heat source for a convenional power plant.
1. Parablic through system
2. Paabolic dish system
3. Solar power tower
  • Solar Energy potential in India
  • Solar Power projects taken up by various National and Multi National Companies in Inida.
  • Indian Government Incentives and Support: Zero or concessional duty applicable on import of certain specific items and Zero excise duty on domestic manufacture of many solar energy devices and systems, etc.
  • The Ministry of Non-conventional Energy Sources, Government of India is attempting to electrify as many villages as possible with the solar photovoltaic system.

30. Estimating the uncertainty in long-term photovoltaic yield predictions

Thevenard, D. and Pelland, S., 2013. Estimating the uncertainty in long-term photovoltaic yield predictions. Solar energy, 91, pp.432-445.

  • Uncertainties in PV system performance: Module rating, Degradation of PV modules, Availability, Presence of snow, Dirt and soiling, Shading, Post-inverter losses * Statistical simulations of long-term PV yield
  • Modeling uncertainties with the Solar Advisor Model
  • For a typical year, SAM predicts an annual energy output and a system performance ratio.

31. Techno-economic Evaluation of the Feasibility of a Smart Street Light System: A case study of Rural India

Velaga, N.R. and Kumar, A., 2012. Techno-economic evaluation of the feasibility of a smart street light system: a case study of rural India. Procedia-Social and Behavioral Sciences, 62, pp.1220-1224. [27]

  • A smart street light system consists of power generation, storage and management device (solar panel or photovoltaic cells, maintenance free batteries and a controller) as well as an efficient light.
  • The tubular rechargeable maintenance free batteries are most appropriate for this purpose.
  • The combination of a light sensor in the form of photo diode and a micro-controller will act as an intelligent mechanism for on-off switch.
  • Suitable for illuminating the streets in rural and hilly areas.
  • Economic Evaluation: total cost of installation of each Smart Street Light (SSL) system is more than five times the cost of High Pressure Sodium Vapor (HSSV) lamp system but the operation cost for SSL is zero.
  • The operation cost not only involves the cost of power consumed by HPSV lamps but it also includes the cost of power loss in transmission. The periodic maintenance of fixtures and ballasts is considered as 50% of replacement cost
  • the Equivalent Uniform Annual Cost for SSL and HPSV systems are found to be INR 332,923 and INR 424,430 respectively.

32. A smart street lighting control system for optimization of energy consumption and lamp life

Mahoor, M., Najafaabadi, T.A. and Salmasi, F.R., 2014, May. A smart street lighting control system for optimization of energy consumption and lamp life. In Electrical Engineering (ICEE), 2014 22nd Iranian Conference on (pp. 1290-1294). IEEE.

  • Smart Street Lighting Control System Design and Definitions
  • The smart street lighting control system design with the capability of dimming

33. Illumient Smart Off-Grid™


  • Lighting Systems are complete, fully-engineered wind and solar-powered solutions.
  • Key features that distinguish Illumient from other lighting solutions,
  • Benefits of LED

34. Upper Peninsula Power Company Integrated Resource Plan


  • Upper Peninsula Power Company (UPPCO) held a series of Stakeholder Forums to receive public input leading to the development of its Integrated Resource Plan (IRP). UPPCO’s plan will be filed with the Michigan Public Service Commission (MPSC) in 2018.
  • An Integrated Resource Plan (IRP) is a process that is used by a utility to evaluate how it will best serve its customers’ future energy needs.
  • Stakeholder Engagement

35. Upper Peninsula Power Company Electricity Rate plan

  • Historical Michigan Electric Rate Information


  • Transmission of electricity laws


  • Street lighting service for Any municipality for customer owned, operated and maintained street lighting and/or traffic signal system.
  • Street lighting service for Any municipality for customer owned, operated and maintained street lighting and/or traffic signal system.
  • Street lighting service for municipality owning its own street lighting system [33]
  • Street lighting service for municipality from Company owned


  • Street light rules of UPPCO




  • Tarrif rates if customer owns electricity and wants to sell to UPPCO


  • Energy Waste Reduction Surcharge


  • rate allignment


  • third party rules, Retail Access Service Tariff


36. PV solar electricity industry: Market growth and perspective

Hoffmann, W., 2006. PV solar electricity industry: Market growth and perspective. Solar energy materials and solar cells, 90(18-19), pp.3285-3311.


  • global PV solar electricity market
  • Profitability increase by adding PV to a diesel battery system
  • Value chain in rural electrification projects
  • PV solar electricity technology
  • The main growth areas are: Japan, Germany, and USA


Dr. A.H.M.E. Reinders, Department of Design, Production and Management, Faculty of Engineering Technology Universlty of Twente, P.O:Box 217, NL-7500 AE Enschede, The Netherlands. [42]

  • Various Industrial design methods
  • Illustration with examples.

38. A review of solar photovoltaic technologies

Bhubaneswari Parida and , S.Iniyan, Institute for Energy Studies, Department of Mechanical Engineering, Anna University Chennai, Chennai 600025, India and Ranko Goic , Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture University of Split, Croatia. Renewable and Sustainable Energy Reviews Volume 15, Issue 3, April 2011, Pages 1625-1636 [43]

  • PV absorbing materials
  • Performance and efficiency
  • Sizing, distribution and control
  • Applications and limitations
Hybrid and smart Solar PV application

39. Study of a Standalone Wind and Solar PV Power Systems

Shafiqur Rehman, Center of Engineering Research, Research Institute and Ibrahim M. El-Amin Electrical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran-31261, Saudi Arabia. 2010 IEEE International Energy Conference [44]

  • Estimations based for stand alone 6kW wind and 6kW solar photovoltaic power systems.
  • Study of seasonal and annual summary of climatic changes and their influence.
  • Yield estimation saperately for wind energy and solar energy.


Wagh, S. and Walke, P.V., 2017. Review on wind-solar hybrid power system. International Journal of Research In Science & Engineering, 3. [45]

  • Steps to design and planning of hybrid system
  • Requirements: Meteorological data, Load Demand, System Configuration.

41. An innovative wind–solar hybrid street light: development and early testing of a prototype

Ricci, R., Vitali, D. and Montelpare, S., 2014. An innovative wind–solar hybrid street light: development and early testing of a prototype. International Journal of Low-Carbon Technologies, 10(4), pp.420-429. [46]

  • A Savonius-type rotor has been studied through wind tunnel tests and designed for the purpose. This type of wind turbine exhibits several advantages with respect to this application, mainly due to its relatively low speed of rotation and its ‘vertical’ geometry, well incorporated in a slender object such as a street light.
  • Basic parts: wind turbines; drive train; PV panel; LED lamp; structure design; electronic devices and battery.
  • Prototype design and making.
  • Selection of Wind turbine
  • Field Experimentation and testing: Although the low mean wind speed (3.7 m/s), the wind generator plays a fundamental role in winter as expected, when the solar energy on the horizontal panel falls drastically at medium/high latitudes.

42. High Efficiency Graphene Solar Cells by Chemical Doping

Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R. and Hebard, A.F., 2012. High efficiency graphene solar cells by chemical doping. Nano letters, 12(6), pp.2745-2750. [47]

  • graphene-based Schottky junction solar cells have been demonstrated on various semiconducting substrates such as Si,(4, 5) CdS,(6) and CdSe(7) with power conversion efficiencies (PCE) ranging from 0.1 up to 2.86%.
  • The work function difference between the graphene and the n-Si results in electrons transferred from the Si to the graphene yielding a Schottky junction with its associated depletion layer in the Si and built-in potential across it..
  • Improved light harvesting in chemically doped graphene/n-Si Schottky junction solar devices.
  • Doping with TFSA overlayers results in an ∼3–5 times increase in power conversion efficiencies of the graphene/n-Si Schottky junction solar cell junctions from 1.9 to 8.6%.

43. Polymer solar cells

Li, G., Zhu, R. and Yang, Y., 2012. Polymer solar cells. Nature photonics, 6(3), p.153. [48]

  • OPVs are divided into two different categories according to whether their constituent molecules are either small or large (polymers). These two classes of materials are rather different in terms of their synthesis, purification and device fabrication processes.
  • PSC polymers is poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV), which was developed by Wudl
  • Morphology: Control is critical in bulk-heterojunction PSCs. Thermal annealing and solvent annealing are currently the most popular methods for controlling morphology
  • Interface and device structure

44. Organic photovoltaics

Kippelen, B. and Brédas, J.L., 2009. Organic photovoltaics. Energy & Environmental Science, 2(3), pp.251-261. [49]

  • Requires low-temperature processing of organic small molecules.
  • Exciton dissociation at the donor–acceptor interface
  • Various device parameters for solar cells

45. An energy efficient pedestrian aware Smart Street Lighting system

Müllner, R. and Riener, A., 2011. An energy efficient pedestrian aware Smart Street Lighting system. International Journal of Pervasive Computing and Communications, 7(2), pp.147-161. [50]

  • Conventional street lighting systems in areas with a low frequency of passersby are online most of the night without purpose
  • Design methodology and approach

46. Intelligent Street Lighting System Using Gsm

Rajput, K.Y., Khatav, G., Pujari, M. and Yadav, P., 2013. Intelligent street lighting system using gsm. International Journal of Engineering Science Invention, 2(3), pp.60-69.

  • Not helpful.

47. Photovoltaic materials, past, present, future Adolf Goetzberger, Christopher Hebling, Fraunhofer Institute for Solar Energy Systems, Oltmannsstrasse 5, D-79100 Freiburg, Germany Solar Energy Materials and Solar Cells Volume 62, Issues 1–2, 15 April 2000, Pages 1-19 [51]

  • thin Film technology

48. Penetration of solar power without storage

Stodola, N. and Modi, V., 2009. Penetration of solar power without storage. Energy Policy, 37(11), pp.4730-4736.


  • Baseload Power plants: That run on coal, nuclear, and some very large oil and gas plants.

Dispatchable power plants: That run on small gas turbines, diesel generators, and hydroelectric dams.

  • Dispatchable power can be at minimum zero, so baseload and solar together must always be less than the load.
  • The elevation angle of the azimuth-tracking and fixed panels was designed to maximize the annual output of electricity for a given solar panel capacity. he fixed panel elevation was set at 5° less than the latitude of the region and the azimuth-tracking at 12° more.
  • Demanding greater than 95% usability severely restricts the share of energy, and decreasing below 90% provides a small increase in share while rapidly increasing the cost of energy..
  • photovoltaic panels could produce a significant share of US electricity needs, due to the synchronicity of power demand with sunshine.

About 196 GW of peak solar panel capacity could be installed to reduce the energy currently provided by dispatchable power plants by 23% and would cover ober 7% of total electrical load in US.

49. A review of particle swarm optimization and its applications in Solar Photovoltaic system.

Khare, A. and Rangnekar, S., 2013. A review of particle swarm optimization and its applications in solar photovoltaic system. Applied Soft Computing, 13(5), pp.2997-3006. [53]

  • Particle swarm optimization is a stochastic optimization, evolutionary and simulating algorithm derived from human behaviour and animal behaviour.
  • Particle Swarm Optimization (PSO) is an evolutionary computation technique, developed for optimization of continuous non linear, constrained and unconstrained, non differentiable multimodal functions .
  • PSO is used for optimal sizing of the system. The aim of sizing methodology is to determine the optimal number and types of devices being used.
  • Cost function includes investment, operation, maintenance cost, along with cost of losses and cost of selling energy to grid, if it is a grid connected system
  • the particle swarm can improve the convergence rate and precision, and enhance the ability of global optimization. Thus new algorithm can be applied to predict the maximum power point (MPP) of the photovoltaic cell.
  • PSO is an interesting and intelligent computational technique for finding global minima and maxima with high capability or multimodal functions and practical applications
Simulation of PV systems

50. System Advisor Model, SAM 2014.1.14: General Description

Blair, N., Dobos, A.P., Freeman, J., Neises, T., Wagner, M., Ferguson, T., Gilman, P. and Janzou, S., 2014. System advisor model, sam 2014.1. 14: General description. link title

  • Project developers, policymakers, equipment manufacturers, and researchers use SAM results to evaluate financial, technology, and incentive options for renewable energy projects.
  • SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems
  • SAM's advanced simulation options facilitate financial model, parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation.
  • SAM can also read input variables from Microsoft Excel worksheets.

51. Modeling and Simulation of Photovoltaic module using MATLAB/Simulink

Mohammed, S.S., 2011. Modeling and Simulation of Photovoltaic module using MATLAB/Simulink. International Journal of Chemical and Environmental Engineering, 2(5). [54]

  • Operation and Characteristics of PV or Solar Cells
  • Mathematical model of PV cell
  • Modeling and Simulation of PV Module

52. Financial Model Documentation [55]

  • Payback Period Calculation for Residential and Commercial

53. Performance Model Documentation [56]

  • Module Models
  • Inverter Models
  • Battery Storage
  • Irradiance
  • DC Losses
  • Model Comparison

Discussion[View | Edit]

Cookies help us deliver our services. By using our services, you agree to our use of cookies.