Appropedia needs your support - Please Donate Today

Tensile Strength of Commercial Polymer Materials for Fused Filament Fabrication 3-D Printing

From Appropedia
Jump to: navigation, search



Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Contact Dr. Joshua Pearce or Apply here

MOST: Projects and Publications, Methods, Lit. reviews, People, Sponsors
Twitter updates @ProfPearce

OSL.jpg


Pearce Publications By Topic: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education



This page is part of an international project to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testingRepRap printing protocol: MOST‎ Lessons learnedMOST RepRap BuildMOST Prusa BuildMOST HS RepRap buildRepRap Print Server


Make me: Want to build a MOST RepRap? - Start here!Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer



Source[edit]

TensileStrength.gif

Abstract[edit]

It is challenging to 3-D print functional parts with known mechanical properties using variable open source 3-D printers. This study investigates the mechanical properties of 3-D printed parts using a commercial open-source 3-D printer for a wide range of materials. The samples are tested for tensile strength following ASTM D638. The results are presented and conclusions are drawn about the mechanical properties of various fused filament fabrication materials. The study demonstrates that the tensile strength of a 3-D printed specimen depends largely on the mass of the specimen, for all materials. Thus, to solve the challenge of unknown print quality a two step process is proposed, which has a reasonably high expectation that a part will have tensile strengths described in this study for a given material. First, the exterior of the print is inspected visually for sub-optimal layers. Then, to determine if there has been under-extrusion in the interior, the samples are massed. This mass is compared to what the theoretical value is using the densities provided in this study for the material and the volume of the object. This provides a means to assist low-cost open-source 3-D printers expand the range of object production to functional parts.

See Also[edit]