Appropedia needs your support - Please Donate Today

Low-cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3-D Printing

From Appropedia
Jump to: navigation, search

Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Contact Dr. Joshua Pearce or Apply here

MOST: Projects and Publications, Methods, Lit. reviews, People, Sponsors
Twitter updates @ProfPearce

OSL.jpg


Pearce Publications By Topic: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education



This page is part of an international project to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testingRepRap printing protocol: MOST‎ Lessons learnedMOST RepRap BuildMOST Prusa BuildMOST HS RepRap buildRepRap Print Server


Make me: Want to build a MOST RepRap? - Start here!Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer


Source[edit]

A. Pinar, B. Wijnen, G. C. Anzalone, T. C. Havens, P. G. Sanders, J. M. Pearce. Low-cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3-D Printing. Journal of Sensors Vol. 2015, Article ID 876714, 8 pages, 2015. doi:10.1155/2015/876714 open access

Full hardware source available at: https://osf.io/k2jcv

Abstract[edit]

Power-weld.jpg

Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3-D printers. Recently low-cost open-source gas metal arc weld (GMAW) RepRap 3-D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3-D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built and tested with two entry-level MIG welders. The full bill of materials and open source designs are provided. Voltage and current were measured while making step-wise adjustments to the manual voltage setting on the welder. Three conditions were tested while welding with steel and aluminum wire on steel substrates to assess the role of electrode material, shield gas and welding velocity. The results showed that the open source sensor circuit performed as designed and could be constructed for <$100 in components representing a significant potential value through lateral scaling and replication in the 3- D printing community.

Keywords[edit]

3-D printing, gas metal arc weld, GMAW, metal inert gas welding, MIG welding, power monitoring

See also[edit]