Appropedia needs your support - Please Donate Today

Substrate Release Mechanisms for Gas Metal Arc Weld 3D Aluminum Metal Printing

From Appropedia
Jump to: navigation, search

Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Contact Dr. Joshua Pearce or Apply here

MOST: Projects and Publications, Methods, Lit. reviews, People, Sponsors
Twitter updates @ProfPearce

OSL.jpg


This page is part of an international project to use RepRap 3-D printing to make OSAT for sustainable development. Learn more.

Research: Open source 3-D printing of OSAT RecycleBot LCA of home recyclingGreen Distributed Recycling Ethical Filament LCA of distributed manufacturingRepRap LCA Energy and CO2 Solar-powered RepRapssolar powered recyclebot Feasibility hub Mechanical testingRepRap printing protocol: MOST‎ Lessons learnedMOST RepRap BuildMOST Prusa BuildMOST HS RepRap buildRepRap Print Server


Make me: Want to build a MOST RepRap? - Start here!Delta Build Overview:MOSTAthena Build OverviewMOST metal 3-D printer



Sub-release.gif

Source[edit]

Abstract[edit]

Limited material options, prohibitively expensive equipment, and high production costs currently limit the ability of small and medium enterprises to use 3D printing to prototype and manufacture metallic goods. A low-cost open-source 3D metal printer that utilizes gas metal arc welding technology has been developed that could make metal printing accessible to the average consumer. Unfortunately, this technology would demand access to expensive cutting tools for part removal from the substrate. This article investigates several substrate treatments to provide a low-cost method to easily remove 3D-printed 1100 aluminum parts from a reusable substrate. Coatings of aluminum oxide and boron nitride on 1100 aluminum and A36 low-carbon steel substrates were tested. Lap shear tests were performed to assess the interlayer adhesion between the printed metal part and the print substrate. No warping of the substrate was observed during printing. It was determined that boron nitride-coated low-carbon steel provided the lowest adhesion strength. Printing aluminum on uncoated low-carbon steel also allowed easy removal of the aluminum part with the benefit of no additional coating steps or costs.

See also[edit]

In the News[edit]