- (BOSTID, 1981, 111 p.)
Work[edit | edit source]
The water buffalo is the classic work animal of Asia, an integral part of that continent's traditional village farming structure. Probably the most adaptable and versatile of all work animals, it is widely used to plow; level land; plant crops; puddle rice fields; cultivate field crops; pump water; haul carts, sleds, and shallow-draft boats; carry people; thresh grain; press sugar cane; haul logs; and much more. Even today, water buffaloes provide 20-30 percent of the farm power in South China, Thailand, Indonesia, Malaysia, Philippines, and Indochina(Figures provided by A. J. de veer. In India water buffaloes contribute much less to farm power (6-12 percent); bullocks are more commonly used. In Pakistan buffaloes are little used for farm power (1-2 percent) but provide much of the road haulage. Papua New Guinea has no tradition of using any work animal, but villagers are increasingly using buffaloes for farm work and the government is employing Fillipinos to train them) . Millions of peasants in the Far East, Middle East, and Near East have a draft buffalo. For them it is often the only method of farming food crops.
As fuel becomes scarce and expensive in these countries, the buffalo is being used more frequently as a draft animal. In 1979 water buffalo prices soared in rural Thailand because of the increased demand.
Although Asian farms have increasingly mechanized in the last 20 years, it has often proved difficult to persuade the farmer to replace his buffalo with a tractor since the buffalo produces free fertilizer and does not require diesel fuel. Now there is renewed official interest in draft power. Sri Lanka has recently opened up large new tracts of farmland in the Mahawali Valley, creating such a demand for work animals that buffalo shortages have become a national development problem. Indonesia's transmigration schemes are also handicapped by shortages of animal power.
For many small farmers the buffalo represents capital. It is often the major investment they have. Buffalo energy increases their productivity and allows them to diversify. Even small farms have work animals that, like the farmer himself, subsist off the farm. Tractors usually require at least four hectares for economical operation, which precludes their use on most peasant farms. Further, the infrastructure to maintain machinery is often not readily available.
Buffaloes are also used for hauling. Buffalo-drawn carts carry goods between villages where road surfaces are unfit for trucks. The animals easily traverse ravines, streams, paddies, and narrow and rocky trails. In the cities carts can compete economically with trucks where the road surface is unprepared, where loading or unloading takes longer than the journey itself, or where the loads are too small and distances too short to make trucking economical. For road haulage buffaloes are generally shod: the shoes are flat plates fitted to each hoof.
Capacity for Work
The water buffalo is a sturdy draft animal Its body structure, especially the distribution of body weight over the feet and legs, is an important advantage. Its large boxy hooves allow it to move in the soft mud of rice fields. Moreover, the buffalo has very flexible pastern and fetlock joints in the lower leg so that it can bend back its hooves and step over obstacles more easily than cattle. This water-loving animal is particularly well adapted to paddy farming because its legs withstand continual wet conditions better than mules or oxen(Australian animal scientists working in Bogor, Indonesia, found that the puddling effect of buffalo hooves on the soil was critical for rice cultivation in the local soils. Tractors produced fields so porous that they drained dry. (Information supplied by A. F. GurnettSmith.) On one research station near Darwin, Australia, buffaloes were used to prevent water draining from a dam. (Information supplied by D. G. Tulloch.).
Although buffaloes are preferred by farmers in the wet, often muddy lowlands of Asia, mules, horses, and cattle move more rapidly and are preferred in the dryer areas.
Water buffaloes do not work quickly. They plod along at about 3 km per hour. In most parts of Southeast Asia they are worked about 5 hours a day and they may take 6-10 days to plow, harrow, and grade one hectare of rice field. Their stamina and drawing power increase with body weight.
Because they have difficulty keeping cool in hot, humid weather (see next chapter), it is necessary to let working buffaloes cool off, preferably in a wallow, every 2 hours or so. Without this their body temperatures may rise to dangerous levels.
A pair of 3-year-old buffaloes costs about the same as a small tractor in Thailand. But many farmers raise their own calves and there is no investment beyond labor. The "fuel" for the animals comes mainly from village pastures and farm wastes such as crop stubble and sugarcane tops. Buffaloes have an average working life of about 11 years, but some work to age 20.
Harness
The yoke used on working buffalo in Asia has changed very little in the last 1,500 years. It is doubtful that a working buffalo can exert its full power with it. The hard wooden yoke presses on a very small area on top of the animal's neck, producing severe calluses, galls, and obvious discomfort. The harness tends to choke the animal as the straps under the neck tighten into the windpipe. Since the traditional hitch is usually higher than the buffalo's low center of gravity, the animal cannot pull efficiently. Considerably more pulling power and endurance can be obtained by improving the harness. The situation is not unlike that in Western agriculture in the twelfth century when the horse collar-one of the most important inventions of the Middle Ages first appeared. Before that, horses were yoked like buffalo and the harness passed across their windpipes and choked them as they pulled. Use of the horse collar improved pulling efficiency and speeded the development of transportation and trade.
The curved yoke now universally used on water buffalo contacts an area of the neck that is only about 200 cm2 (little more than half the size of this page). The entire load is pulled on this small area and causes the wood to dig into the flesh.
A horse collar is a padded leather device that encircles the animal's neck. One modified in Thailand for use on water buffalo (see page 43) had a contact area of 650 cm2, more than three times that of the yoke it replaced. The collar's padding pressed against the animal's shoulders, not its neck, and therefore did not choke it. Attached to the collar were wooden harnes with the traces for hitching the animal to a wagon or plow. In trials a buffalo pulled loads 24 percent heavier with the collar than with the yoke, and the horsepower it developed increased by 48 percent(These trials were conducted by J. K. Garner in Thailand in 1958. In the maximum-load test the yoked buffalo failed to move a load of 570 kg, but it moved a load of 640 kg when fitted with the horse collar. In an endurance test the yoked animal took 35 minutes to pull a load 550 m, but harnessed with the collar it took only 21 minutes).
Another potentially valuable harness is the breast strap, a set of broad leather straps that pass over the animal's neck and back. One breast strap modified for water buffalo use had a contact area of 620 cm2, almost as much as that of the horse collar, and in trials the buffalo pulled a load 12 percent heavier than with a yoke and the horsepower it developed increased by almost 70 percent( The same animal used in the horse collar trials pulled 700 kg with the breast strap, in the endurance test it took 18.5 minutes to travel the 550-m distance).
These seem very good innovations. In the humid tropics, however, leather collars and breast straps may decay rapidly. To make them widely practical may require experimentation with, or development of, special leather treatments or more durable materials.
Selected Readings
Cockrill, W. R. 1974. The working buffalo. In: The Husbandry and Health of the Domes tic Buffalo, edited by W. R. Cockrill. Food and Agriculture Organization of the United Nations, Rome, Italy.
Cockrill, W. R. 1976. The Buffaloes of China. Food and Agriculture Organization of the United Nations, Rome, Italy.
de Guzman, M. R., Jr. 1975. The water buffalo-Asia's beast of burden and key to progress. In: The Asiatic Water Buffalo. Proceedings of an International Symposium held at Khon Kaen, Thailand, March 31-April 6, 1975. Food and Fertilizer Technology Center, Taipei, Taiwan.
Garner, J. K. 1958 (Reprint 1980) Increasing the Work Efficiency of the Water Buffalo Through Use of Improved Harness. (Copies available from Office of Agriculture, Development Support Bureau, Agency for International Development, Washington, D.C. 20523)
Kamal, T. H., Shehata, O., and Elbanna, I. M. 1972. Isotope Studies on the Physiology of Domestic Animals. International Atomic Energy Agency, Vienna, Austria.
Robinson, D. W. 1977. Preliminary Observations on the Productivity of Working Buffalo in Indonesia. Research Report No. 2, Center for Animal Research and Development, Bogor, Indonesia.
Vaugh, M. 1945. Report on a detailed study of methods of yoking bullocks for agricultural work. Indian Journal of Veterinary Science 15:186-198.
Ward, G. M., Sutherland, T. M., and Sutherland, J. M. 1980. Animals as an energy source in Third World agriculture. Science 208:570.