B1723.jpg
(BOSTID, 1981, 111 p.)

Reproduction[edit | edit source]

The water buffalo has a reputation for being a sluggish breeder, but the average animal is so poorly fed that its reproductive performance is unrepresentative of its capabilities. Without reasonable nutrition the animals cannot reach puberty as early in life or reproduce as regularly as their physiology or genetic capability would normally allow.

Actually, adequately nourished buffaloes reach puberty at about the same age as cattle, as early as 18 months of age in buffalo bulls. In northern Australia Swamp females have conceived even as early as 14 months of age and feral buffaloes routinely conceive at 16 months of age. In the herd at Punjab Agricultural University in Ludhiana, India, 11 River buffalo heifers showed estrus at ages less than 18.5 months and a few came into heat when less than 15 months old.

The water buffalo also can calve at an age comparable to that of cattle. At the Ain Shams University in Egypt a well-fed Egyptian buffalo herd of several hundred animals has an average age at first calving of 27 months, 22 days(Information supplied by M. El Ashry. Because of nutritional uncertainties, El Ashry and his colleagues believe that body weight is a better indicator of sexual preparedness than age is. These researchers at Ain Shams University recommend mating heifers when they weigh 365 kg no matter what their age. Research at Punjab Agricultural University shows that buffalo heifers can be bred when they weigh over 270 kg and manifest estrus).Most animals in the Punjab Agricultural University River buffalo herd calved before 35 months, one at 28.3 months.! In one Venezuelan herd almost all heifers 20-24 months old were pregnant; virtually all calved before age 38 months, most by 30 months, and one at age 23 months.

In trials in Queensland, Australia, and in Papua New Guinea buffaloes produced more calves over a 3-year period than the cattle tested with them. In the hot, humid Sepik Plains in northern Papua New Guinea it was noticed that female buffaloes (Swamp breed) came into estrus even while they were losing weight because of inadequate nutrition, whereas cattle did not. Under these stressful conditions the buffalo calves also reached sexual maturity earlier and the buffaloes had a higher calving percentage and a shorter calving interval because they came back into estrus more quickly than cattle(Information supplied by J. Schottler. The age at first calving of more than 60 nutritionally poor buffaloes was 38 months in one herd and 45 months for Brahman cross cattle) . Similar observations have been made in Florida, Trinidad, the Brazilian Amazon, Venezuela, and elsewhere. Although these are exceptions to the normal observations in Asia, where buffaloes seem to breed more slowly than cattle, they do demonstrate the buffalo's potential for improved breeding.

Estrus in buffalo cows usually lasts about 24 hours, but duration varies and may range from 11 to 72 hours. It occurs on an average 21-day cycle. Determination of when a cow is in estrus is difficult because often the animal shows few outward signs of "heat." This increases the chances of missing a cycle, especially for artificial insemination. Unclean surroundings, poor nutrition, and poor management, cause a high death rate among calves; this also contributes to the buffalo's often low reproductive rate.

In many areas, calving is seasonal. This seems to be largely due to changes in nutrition. It may also be caused by heat stress, in either males or females, which results in a low breeding rate during the hot season. However, when buffalo cows are well fed, they come into estrus and will breed in any season.

Many matings take place at night and are therefore unobserved. In one set of pregnancy diagnoses in northern Australia, the buffalo's conception rate (81 percent) was higher than that of the Brahman crossbreeds (70 percent) they were with. In India, artificial insemination of water buffaloes began in the late 1950s. Deep-frozen semen is now available and its use is spreading. Overall conception rates of 70-80 percent are obtained. It is estimated that some 100,000 buffaloes are now being artificially inseminated.

The water buffalo's gestation period is about one month longer and is more variable than that of cattle. Whereas cattle give birth after about 280 days (Angus, 279, Holstein, 279-280, Brown Swiss, 286), buffaloes take 300334 days (average 310) or roughly 10 months and 10 days (differences between breeds are unknown). In Punjab, India, River buffaloes have been observed to come into estrus as early as 40 days after calving.

Nonetheless, only under uncommon circumstances can a buffalo cow produce a calf each year. In one herd of 800 cows in Venezuela the average female buffalo over age 4 produces 2 calves every 3 years. In response to a recent questionnaire, the majority of Indonesian farmers estimated that the calving rate was between 3 and 4 calves in 5 years. A few claimed a calf a year, some only 1 or 2 calves In 5 years. In Florida it has been noted that some buffalo cows having just calved became pregnant more quickly than cattle, so that a calf may indeed be produced each year. Regular yearly breeding has been noted also in northern Australia.

The incidence of abortion, dystocia, retained placenta, and other parturition problems in buffaloes is similar to that in cattle. Twinning is very rare; probably no more than 0.01 percent of buffalo pregnancies produce twins.

Preliminary results in northern Australia indicate that weaning can be carried out as late as 12 months of age without any effect on conception time of the buffalo dam.

Selected Readings

Bhattacharya, P. 1974. Reproduction. In: The Husbandry and Health of the Domestic Buffalo, edited by W. R. Cockrill. Food and Agriculture Organization of the United Nations, Rome, Italy.

Chauhan, F. S., Singh, N., and Singh, M. 1977. Involution of uterus and cervix in buffaloes. Indian Journal of Dairy Science 30(4):286-291.

Eusibio, A. N. 1975. Breeding, management and feeding practices of buffaloes in the Philippines. In: The Asiatic Water Buffalo. Proceedings of an International Symposium held at Khon Kaen, Thailand, March 31-April 6, 1975. Food and Fertilizer Technology Center, Taipei, Taiwan.

FAO Animal Production and Health Paper. 1979. Buffalo Reproduction and Artificial Insemination. Proceedings of the Seminar Sponsored by FAO/SIDA/Government of India, held at National Dairy Research Institute, Karnal, 132001-India, December 4-15, 1978. Food and Agriculture Organization of the United Nations, Rome, Italy.

Ghanem, Y. S. 1955a. Environmental causes of variation in the length of gestation of buffaloes. Indian Journal of Veterinary Science 25 :301-311.

Ghanem, Y. S. 1955b. Genetic causes of variation in the length of gestation of buffaloes. Indian Journal of Veterinary Science 25:307-311.

Health, E., and Gupta, R. 1976. Ultrastructure of water buffalo (Bos bubalis) spermatozoa. Zentralblatt fuer Veterinaerrnedizin 23(2):106-120.

Liu, C. H. 1978. The preliminary results of crossbreeding of buffaloes in China. Research Institute for Animal Science of Kwangsi, People's Republic of China.

Matharoo, J. S., and Singh, M. 1980. Revivability of buffalo spermatozoa after deepfreezing the semen using various extenders. Zentralblatt fuer Veterinaermedizin 27(5): 385-391.

Rao, A. V. N., Murthy, T. S., and Dutt, K. L. 1979. Effect of lunar cyclicity on oestrus rhythmicity in the Indian water buffalo. Livestock Advisor 4(7):29-30.

Rawal, C. V. S. 1978. A study on correlations of weight of pituitary gland and reproductive organs in males of Indian water buffalo. Indian Journal of Heredity 10(3):11-12.

Robinson, D. W. 1977. Livestock in Indonesia. Research Report No. 1. Centre for Animal Research and Development, Bogor, Indonesia. (In English and Indonesian.)

Roy, A. 1974. Observations on the physiology of reproduction. In: The Husbandry and Health of the Domestic Buffalo, edited by W. R. CockrilL Food and Agriculture Organization of the United Nations, Rome, Italy.

Sahai, R., and Singhal, R. A. 1977. The sex chromatin profile of water buffaloes of Murrah breed. Indian Journal of Animal &Science 11(2):63-67.

Sharma, A. 1978. Studies on the process of spermatogenesis and epididymal sperm reserve in water buffalo (Bubalus bubalis). Thesis Abstracts, Haryana Agricultural University 4(4):331.

Singh, M., Matharoo, J. S., and Chauhan, F. S. 1980. Preliminary fertility results with frozen buffalo semen in Tris extender. Theriogenology 13(3):191-194.

Singh, N., Chauhan, F. S., and Singh, M. 1979. Postpartum ovarian activity and fertility in buffaloes. Indian Journal of Dairy Sefence 32(2): 134-139.

Sunkaporn Ratanadilok Na Puket. 1975. The improvement of buffalo production through breeding and management under Thailand conditions. In: Asiatic Water Buffalo. Proceedings of an International Symposium held at Khon Kaen, Thailand, March 31-April 6, 1975. Food and Fertilizer Technology Center, Taipei, Taiwan.

Takkar, P. O., Chauhan, F. S., Tiwana, M. S., and Singh, M. 1979. Breeding behaviour of buffalo cows. Indian Veterinary Journal 56: 168-172.

Toelihere, M. R. 1975. Physiology of reproduction and artificial insemination of water buffaloes. In: The Asiatic Water Buffalo. Proceedings of an International Symposium held at Khon Kaen, Thailand, March 31-April 6, 1975. Food and Fertilizer Technology Center, Taipei, Taiwan.

Tulloch, D. G. 1968. Incidence of calving and birth weights of domesticated buffalo in the Northern Territory. Proceedings of the Australian Society for Animal Production 7: 144-147.

Tulloch, D. G. 1979. The water buffalo in Australia: reproductive and parent-offspring behaviour of buffalo. Australian Wildlife Research 6:265-287.

FA info icon.svg Angle down icon.svg Page data
Authors Eric Blazek
License CC-BY-SA-3.0
Language English (en)
Related 0 subpages, 1 pages link here
Impact 23 page views (more)
Created April 14, 2006 by Eric Blazek
Last modified December 9, 2023 by Felipe Schenone
Cookies help us deliver our services. By using our services, you agree to our use of cookies.