mandatory-photovoltaic-system-cost-analysis Mandatory PV System Cost Analysis in Arizona[edit | edit source]

mandatory-photovoltaic-system-cost-estimate Mandatory PV System Cost Analysis in Colorado[edit | edit source]

K. Zweibel,"Should Solar Photovoltaics be deployed sooner because of long operating life at low, predictable cost?", Energy Policy, Vol. 38, Issue 11, Energy Efficiency Policies and Strategies with Regular Papers., Nov. 2010, Pages 7519-7530, ISSN 0301-4215, DOI: 10.1016/j.enpol.2010.07.040.[edit | edit source]

Abstract:

Governments subsidize the deployment of solar photovoltaics (PV) because PV is deployed for societal purposes. About seven thousand megawatts were deployed in 2009 and over 10,000 are expected in 2010. Yet this is too slow to strongly affect energy and environmental challenges. Faster societal deployment is slowed because PV is perceived to be too costly. Classic economic evaluations would put PV electricity in the range of 15–50 c/kWh, depending on local sunlight and system size. But PV has an unusual, overlooked value: systems can last for a very long time with almost no operating costs, much like, e.g., the Hoover Dam. This long life is rarely taken into account. The private sector cannot use it because far-future cash flow does not add to asset value. But we should not be evaluating PV by business metrics. Governments already make up the difference in return on investment needed to deploy PV. PV deployment is government infrastructure development or direct purchases. Thus the question is: Does the usually unevaluated aspect of long life at predictably low operating costs further motivate governments to deploy more PV, sooner?

Reaching Grid Parity Using BP Soalr Crystalline Technology[1][edit | edit source]

Abstract: This paper reports on BP Solar's DOE sponsored Solar America Initiative, Technology Pathways Partnership. The paper presents the goals, the technical approach and progress from the first nine months of the program. The overall goals of the program are to reach grid parity for residential and commercial markets and to increase production volumes. This program is addressing all aspects of the PV product chain from raw materials including silicon through installation of the systems at the customer site. To achieve parity with the grid and growth to gigawatt levels of production requires involvement of this entire product chain. To this end the program involves 16 subcontractors including materials vendors, production equipment manufacturers, balance of system component vendors and research laboratories — both university and industrial. During the first nine months of the program progress has been made in casting, wire sawing, processing of thinner cells, development of additional sources of AR coated glass and cost reduction in the encapsulation package.

Thin Film PV: The Pathway to Grid Parity[2][edit | edit source]

Abstract: First Solar is the global leader in PV module manufacturing, at <$1.00/W. Grid parity will require a module cost/W 30% lower. This talk will outline the pathway to $0.65/W and parity with fossil fuels.

Financial Return for Government Support of Large-scale Thin-film Solar Photovoltaic Manufacturing in Canada[3][edit | edit source]

As the Ontario government has recognized that solar photovoltaic (PV) energy conversion is a solution to satisfying energy demands while reducing the adverse anthropogenic impacts on the global environment that compromise social welfare, it has begun to generate policy to support financial incentives for PV. This paper provides a financial analysis for investment in a 1 GW per year turnkey amorphous silicon PV manufacturing plant. The financial benefits for both the provincial and federal governments were quantified for: (i) full construction subsidy, (ii) construction subsidy and sale, (iii) partially subsidize construction, (iv) a publicly owned plant, (v) loan guarantee for construction, and (vi) an income tax holiday. Revenues for the governments are derived from: taxation (personal, corporate, and sales), sales of panels in Ontario, and saved health, environmental and economic costs associated with offsetting coal-fired electricity. Both governments enjoyed positive cash flows from these investments in less than 12 years and in many of the scenarios both governments earned well over 8% on investments from 100 s of millions to $2.4 billion. The results showed that it is in the financial best interest of both the Ontario and Canadian federal governments to implement aggressive fiscal policy to support large-scale PV manufacturing.

BoS Cost Savings and LCOE Reduction for a 10 MW PV System with the 500 kW Transformer-less Inverter[4][edit | edit source]

Abstract: This paper presents the cost advantages that a high-performance, 500 kW, transformerless PV inverter can have for a solar PV system. Higher efficiency, smaller size, and lower installation costs impact balance-of -system (BoS) costs and reduce the levelized cost of energy (LCOE) compared with traditional, transformer-based PV inverters. These cost advantages should be considered as integrators and end-users in China and the U.S. select and install inverters in PV systems. This paper focuses on the effect of a more efficient PV inverter on BoS cost and LCOE, analyzing real PV grid-connected, transformerless inverter applications as well as unipolar and bipolar PV array configurations. Some standards and specifications for the PV inverters are introduced, such as CEC-weighted and EU efficiency. Using the Solar Advisory Model (SAM) and PVSYST software with PV module, inverter, and weather data, a simulation to calculate the LCOE and system performance rate of a bipolar PV array with a transformerless inverter is presented for a 10 MW PV system in Dunhuang, China.

Solar Grid Parity - [Power Solar][5][edit | edit source]

Abstract:

Nuclear power and solar photovoltaic energy conversion often compete for policy support that governs economic viability. This paper compares current subsidization of the nuclear industry with providing equivalent support to manufacturing photovoltaic modules. Current U.S. indirect nuclear insurance subsidies are reviewed and the power, energy and financial outcomes of this indirect subsidy are compared to equivalent amounts for indirect subsidies (loan guarantees) for photovoltaic manufacturing using a model that holds economic values constant for clarity. The preliminary analysis indicates that if only this one relatively ignored indirect subsidy for nuclear power was diverted to photovoltaic manufacturing, it would result in more installed power and more energy produced by mid-century. By 2110 cumulative electricity output of solar would provide an additional 48,600 TWh over nuclear worth $5.3 trillion. The results clearly show that not only does the indirect insurance liability subsidy play a significant factor for nuclear industry, but also how the transfer of such an indirect subsidy from the nuclear to photovoltaic industry would result in more energy over the life cycle of the technologies.

PV Technology Trends and Industry Needs[6][edit | edit source]

Abstract: PV power generation is the most promising generation system, which is expected to overcome both global warming problems and energy resource shortage problems. However, the present PV systems are inferior to conventional generation systems in terms of power generation cost, resource securing and power quality, though its installation is increasing rapidly because of subsidy systems introduced by many countries. In order to achieve a great growth under consumers' free will, overcoming those issues, that is to achieve grid parity, is necessary. As it is impossible to achieve grid parity only by PV system manufacturers, it is necessary to cooperate with electric power companies, academic and governmental organizations.

The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US[7][edit | edit source]

Abstract: So far, solar energy has been viewed as only a minor contributor in the energy mixture of the US due to cost and intermittency constraints. However, recent drastic cost reductions in the production of photovoltaics (PV) pave the way for enabling this technology to become cost competitive with fossil fuel energy generation. We show that with the right incentives, cost competitiveness with grid prices in the US (e.g., 6–10 USb/kWh) can be attained by 2020. The intermittency problem is solved by integrating PV with compressed air energy storage (CAES) and by extending the thermal storage capability in concentrated solar power (CSP). We used hourly load data for the entire US and 45-year solar irradiation data from the southwest region of the US, to simulate the CAES storage requirements, under worst weather conditions. Based on expected improvements of established, commercially available PV, CSP,and CAES technologies, we show that solar energy has the technical, geographical, and economic potential to supply 69% of the total electricity needs and 35% of the total (electricity and fuel) energy needs of the US by 2050. When we extend our scenario to 2100, solar energy supplies over 90%, and together with other renewables, 100% of the total US energy demand with a corresponding 92% reduction in energy-related carbon dioxide emissions compared to the 2005 levels.

Energy technology perspectives 2008: scenarios and strategies to 2050[8][edit | edit source]

Abstract:

Photovoltaics Power Up[9][edit | edit source]

Abstract:

The global photovoltaic (PV) power industry is experiencing dramatic technology advances and market growth. Over the past 20 years, manufacturing output has grown by a factor of 200, reaching 5 gigawatts (GW) in 2008. The total accumulated installed capacity is now around 15 GW. This is quite small relative to the world's 4000 GW of installed electric generation capacity—just 0.375% to be precise. However, industry leaders expect similar rapid growth over the coming years, with PV generation a major contributor to power generation 20 years hence.

The Economics of Grid-Connected Electricity Production from Solar Photovoltaic Systems[10][edit | edit source]

Abstract:

This paper analyses the economics of grid-connected photovoltaic systems. With the 2003 costs of photovoltaic systems, under prevailing capital market conditions, with a system lifetime of 30 years, and under the best climatic conditions, it appears that the cost of production of grid-connected electricity could be of 0.28 US $/kWh. Similar values hold for other regions (US locations under medium climatic conditions, European locations, Switzerland and Japan with, in these countries, low costs of capital). If the lifetime of the system goes up, due to future technological improvements, to a very large value such as 50 years, these costs can be lowered by a significant amount, leading to estimates of of 0.24 US $/kWh. Competitiveness of grid-connected photovoltaic electricity, while it still cannot be taken for granted, is a possibility, especially if major technological advances further lowers the costs of photocells and increases their lifetimes.

Levelised Cost of Energy Analysis- Version 3.0[11][edit | edit source]

Abstract:

Experimental study of variations of the solar spectrum of relevance to thin film solar cells[12][edit | edit source]

Abstract:The influence of variations in the incident solar spectrum on solar cells is often neglected. This paper investigates the magnitude of this variation and its potential influence on the performance of thin film solar cells in a maritime climate. The investigation centres on the analysis of a large number of measurements carried out in Loughborough, UK, at 10 min intervals over a period of 30 months. The magnitude of the spectral variation is presented both on a daily and a seasonal basis. Of the different thin film materials studied, amorphous silicon is shown to be the most susceptible to changes in the spectral distribution, with the "useful fraction" of the light varying in the range +6% to −9% of the annual average, with the maximum occurring in summer time.

Hourly Electricity Pricing Boosts Value of Distributed Solar by 33 Percent[13][edit | edit source]

  • Time-of-use (TOU) pricing is a different billing method for electricity, where the customer pays based on the time of day of using electricity rather than a flat rate per kilowatt-hour consumed. The premise is that electricity is more expensive when in high demand (e.g. by air conditioners in the afternoon on hot, sunny days) and that pricing accordingly will help reduce demand.
  • This pricing scheme can act as an incentive to go solar, because solar panels tend to operate at their highest capacity during summer months.

Photovoltaic module reliability model based on field degradation studies[14][edit | edit source]

Abstract:Crystalline silicon photovoltaic (PV) modules are often stated as being the most reliable element in PV systems. This presumable high reliability is reflected by their long power warranty periods. In agreement with these long warranty times, PV modules have a very low total number of returns, the exceptions usually being the result of catastrophic failures. Up to now, failures resulting from degradation are not typically taken into consideration because of the difficulties in measuring the power of an individual module in a system. However, lasting recent years PV systems are changing from small isolated systems to large grid-connected power stations. In this new scenario, customers will become more sensitive to power losses and the need for a reliability model based on degradation may become of utmost importance. In this paper, a PV module reliability model based on degradation studies is presented. The main analytical functions of reliability engineering are evaluated using this model and applied to a practical case, based on state-of-the-art parameters of crystalline silicon PV technology. Relevant and defensible power warranties and other reliability data are obtained with this model based on measured degradation rates and time-dependent power variability. In the derivation of the model some assumptions are made about the future behaviour of the products—i.e. linear degradation rates—although the approach can be used for other assumed functional profiles as well. The method documented in this paper explicitly shows manufacturers how to make reasonable and sensible warranty projections.

Effect of economic parameters on power generation expansion planning[15][edit | edit source]

Abstract:The increasing consumption of electricity within time forces countries to build additional power plants. Because of technical and economic differences of the additional power plants, economic methodologies are used to determine the best technology for the additional capacity. The annual levelized cost method is used for this purpose, and the technology giving the minimum value for the additional load range is chosen. However, the economic parameters such as interest rate, construction escalation, fuel escalation, maintenance escalation and discount factor can affect the annual levelized cost considerably and change the economic range of the plants. Determining the values of the economical parameters in the future is very difficult, especially in developing countries. For this reason, the analysis of the changing rates of the mentioned values is of great importance for the planners of the additional capacity.

In this study, the changing rates of the economic parameters that influence the annual levelized cost of the alternative power plant types are discussed. The alternative power plants considered for the electricity generation sector of Turkey and the economic parameters dominating each plant type are determined. It is clearly seen that the annual levelized cost for additional power plants varies with the economic parameters. The results show that the economic parameters variation has to be taken into consideration in electricity generation planning.

Reconsidering solar grid parity[16][edit | edit source]

Abstract:Grid parity–reducing the cost of solar energy to be competitive with conventional grid-supplied electricity–has long been hailed as the tipping point for solar dominance in the energy mix. Such expectations are likely to be overly optimistic. A realistic examination of grid parity suggests that the cost-effectiveness of distributed photovoltaic (PV) systems may be further away than many are hoping for. Furthermore, cost-effectiveness may not guarantee commercial competitiveness. Solar hot water technology is currently far more cost-effective than photovoltaic technology and has already reached grid parity in many places. Nevertheless, the market penetration of solar water heaters remains limited for reasons including unfamiliarity with the technologies and high upfront costs. These same barriers will likely hinder the adoption of distributed solar photovoltaic systems as well. The rapid growth in PV deployment in recent years is largely policy-driven and such rapid growth would not be sustainable unless governments continue to expand financial incentives and policy mandates, as well as address regulatory and market barriers.

Assumptions and the levelized cost of energy for photovoltaics[17][edit | edit source]

Abstract:Photovoltaic electricity is a rapidly growing renewable energy source and will ultimately assume a major role in global energy production. The cost of solar-generated electricity is typically compared to electricity produced by traditional sources with a levelized cost of energy (LCOE) calculation. Generally, LCOE is treated as a definite number and the assumptions lying beneath that result are rarely reported or even understood. Here we shed light on some of the key assumptions and offer a new approach to calculating LCOE for photovoltaics based on input parameter distributions feeding a Monte Carlo simulation. In this framework, the influence of assumptions and confidence intervals becomes clear.

Photovoltaic Technology: The Case for Thin-Film Solar Cells[18][edit | edit source]

Abstract: The advantages and limitations of photovoltaic solar modules for energy generation are reviewed with their operation principles and physical efficiency limits. Although the main materials currently used or investigated and the associated fabrication technologies are individually described, emphasis is on silicon-based solar cells. Wafer-based crystalline silicon solar modules dominate in terms of production, but amorphous silicon solar cells have the potential to undercut costs owing, for example, to the roll-to-roll production possibilities for modules. Recent developments suggest that thin-film crystalline silicon (especially microcrystalline silicon) is becoming a prime candidate for future photovoltaics.

Thin-film solar cells: review of materials, technologies and commercial status[19][edit | edit source]

Abstract: The recent boom in the demand for photovoltaic modules has created a silicon supply shortage, providing an opportunity for thin-film photovoltaic modules to enter the market in significant quantities. Thin-films have the potential to revolutionise the present cost structure of photovoltaics by eliminating the use of the expensive silicon wafers that alone account for above 50% of total module manufacturing cost. The strengths and weaknesses of the contending thin-film photovoltaic technologies and the current state of commercial activity with each are briefly reviewed.

Realistic generation cost of solar photovoltaic electricity[20][edit | edit source]

Abstract:

  • Section 1 identifies general methods of assessing the economic performance of BIPV power systems. A major barrier to analyzing renewable energy systems is assembling and presenting the technical and financial data in forms that will help a client determine if a BIPV power system would make economic sense. Economic methods of investment analysis, including payback period, net benefit analysis, savings-to-investment ratio, adjusted internal rate of return, and life-cycle cost analysis, are presented for use by the owner-occupant, owner-investor, and owner-developer.
  • Section 2 describes the benefits of BIPV systems, which can affect the decision making process. These benefits derive from such factors as energy cost savings, revenue or credits from the sale of power, enhanced power quality and reliability, reduced construction costs, reductions in environmental emissions, increased rents, tax credits, rebates, and other incentives. Some of these benefits can be identified, evaluated in monetary terms, and entered into the calculation of economic performance. Other effects may be difficult to quantify and are considered qualitatively.
  • Section 3 characterizes the relative costs of BIPV power systems for the building owner. Limited published data is available on BIPV power system costs. A preliminary survey conducted in this study indicates that manufacturer marketing representatives provide widely varying cost estimates. Consequently, a variety of vendor bids should be gathered and reviewed prior to making an investment decision. There can also be hidden or unexpected costs, which will be examined in this section.
  • Section 4 specifies measurement and verification (M&V) for BIPV power systems. Prescribing an internationally accepted guideline for M&V can ensure that generation and savings requirements in BIPV power systems will be accurately, consistently, and objectively determined.

Power Plants: Characteristics and Costs[21][edit | edit source]

Abstract: This report analyzes the factors that determine the cost of electricity from new power plants. These factors — including construction costs, fuel expense, environmental regulations, and financing costs — can all be affected by government energy, environmental, and economic policies. Government decisions to influence, or not influence, these factors can largely determine the kind of power plants that are built in the future. For example, government policies aimed at reducing the cost of constructing power plants could especially benefit nuclear plants, which are costly to build. Policies that reduce the cost of fossil fuels could benefit natural gas plants, which are inexpensive to build but rely on an expensive fuel.

2010 Solar technologies market report[22][edit | edit source]

Abstract: This report focuses on solar market trends through December 31, 2010; it provides an overview of the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies, identifies successes and trends within the market from both global and U.S. perspectives, and offers a general overview of the state of the solar energy market. The report is organized into five chapters. Chapter 1 provides a summary of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 closes the report with a discussion on private investment trends and near-term market forecasts.

Solar cell efficiency tables (version 37)[23][edit | edit source]

Abstract: Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since June 2010 are reviewed.

2010 comparison of electricity prices in major north American cities[24][edit | edit source]

Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems[25][edit | edit source]

Abstract: In this work, we examine some of the limits to large-scale deployment of solar photovoltaics (PV) in traditional electric power systems. Specifically, we evaluate the ability of PV to provide a large fraction (up to 50%) of a utility system's energy by comparing hourly output of a simulated large PV system to the amount of electricity actually usable. The simulations use hourly recorded solar insolation and load data for Texas in the year 2000 and consider the constraints of traditional electricity generation plants to reduce output and accommodate intermittent PV generation. We find that under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. Several metrics are developed to examine this excess PV generation and resulting costs as a function of PV penetration at different levels of system flexibility. The limited flexibility of base load generators produces increasingly large amounts of unusable PV generation when PV provides perhaps 10–20% of a system's energy. Measures to increase PV penetration beyond this range will be discussed and quantified in a follow-up analysis.

PV Durability and Reliability Issues[26][edit | edit source]

  • While there are initial PV qualification tests, such as the IEC and UL requirements, among others, they are neither intended to, nor capable of, predicting long-term performance. As a result, there has been an evolution in the application of accelerated life testing (ALT) and accelerated environmental testing (AET) to the service life prediction (SLP) of PV modules and systems.
  • no test program can predict with 100% certainty that a module will properly perform in an environment for 25+ years (except for real-time 25 year testing, of course)

Sustainability of photovoltaics: The case for thin-film solar cells[27][edit | edit source]

Abstract: To ensure photovoltaics become a major sustainable player in a competitive power-generation market, they must provide abundant, affordable electricity, with environmental impacts drastically lower than those from conventional power generation. The recent reduction in the cost of 2nd generation thin-film PV is remarkable, meeting the production milestone of $1 per watt in the fourth quarter of 2008. This achievement holds great promise for the future. However, the questions remaining are whether the expense of PV modules can be lowered further, and if there are resource- and environmental-impact constraints to growth. I examine the potential of thin-films in a prospective life-cycle analysis, focusing on direct costs, resource availability, and environmental impacts. These three aspects are closely related; developing thinner solar cells and recycling spent modules will become increasingly important in resolving cost, resource, and environmental constraints to large scales of sustainable growth.

Long Term Photovoltaic Module Reliability[28][edit | edit source]

Abstract: The reliability of crystalline silicon PV modules has improved dramatically over the years. Module warranties of 25 years are now common. Extension of the warranties to 25 years was based on excellent field results for modules with 10 year warranties and on extensive accelerated testing. Since none of the 25 year warranty modules have been in the field that long, we do not know how or when they will eventually fail. It is important for the PV industry to know this, because it impacts the ultimate useful life of our PV systems, it provides critical input for future improvements in module reliability and it provides important data on the long term wear out or failure of today's crystalline silicon PV modules.

Reliability Concerns Associated with PV Technologies[29][edit | edit source]

Reliability of PV Systems, Reliability of Photovoltaic Cells, Modules, Components and Systems[30][edit | edit source]

Abstract: According to John Wohlgemuth (BP Solar), "Today, BP Solar offers a 25-year warranty on most of its crystalline silicon PV modules…while the modules have to last for 25 years of outdoor exposure, we cannot wait 25 years to see how they perform… no BP/Solarex module has been in the field longer than ten years. Even the oldest 20-year warranty modules have only been in the field 15 years."

Photovoltaics - A Path to Sustainable Futures[31][edit | edit source]

Current Status of Photovoltaics and Market Developments[32][edit | edit source]

Reducing green house gas emissions by inducing energy conservation and distributed generation from elimination of electric utility customer charges[33][edit | edit source]

Dynamic Maps, GIS Data, and Analysis Tools[34][edit | edit source]

Reference[edit | edit source]

  1. J. H. Wohlgeuth, D. W. Cunnigham, R. F Clark, J. P. Psobic, J. M Zahler, P. Garvison, D. E. Carlson, and M. Gleaton,"Reaching Grid Parity Using BP Soalr Crystalline Technology", IEEE Photovoltaic Specialists Conf. pp.1-4, May 2008.
  2. Benny Buller and David Eaglesham, "Thin Film PV: The Pathway to Grid Parity," in Optics and Photonics for Advanced Energy Technology, 2009, p. ThD1
  3. K. Branker, and J. M. Pearce,"Financial Return for Government Support of Large-scale Thin-film Solar Photovoltaic Manufacturing in Canada", Energy Policy, Vol. 38, Issue 8, Aug 2010, pp. 4291-4303.
  4. C.H. Hung, J. Gilmore, C. P. Huang, P. G Dai, and W. Zhu,"BoS Cost Savings and LCOE Reduction for a 10 MW PV System with the 500 kW Transformer-less Inverter", 2nd IEEE International Symposium on Power Electronics for Distributed Generation Systems,pp. 924-928, June 2010.
  5. D. Lewis,"Solar Grid Parity - Solar Power", IEEE/IET VDE VERLAG conf. proc., vol. 4, Issue 9, pp. 50-53, June 2009.<ref>==== Abstract: Wherever you are in the world, solar-powered electricity is much more expensive than all the alternatives. Yet in the last few decades, huge progress has been made in solar's cost and efficiency, while the full price of conventional power has only risen. Will it ever be possible for solar power to match the costs of our current electricity generation? The author gauges the likelihood. ==== Diverting Indirect Subsidies from the Nuclear Industry to the Photovoltaic Industry: Energy and Financial Returns<ref>Z. Zovko, and J. M. Pearce,"Diverting Indirect Subsidies from the Nuclear Industry to the Photovoltaic Industry: Energy and Financial Returns", Energy Policy, vol. 39, issue 5, May 2011, pp. 2626-2632.
  6. N. Asano, and T. Saga,"PV Technology Trends and Industry Needs",IEEE International Electron Devices and Meeting, pp. 1-6, Dec. 2008.
  7. F. Vasilis, M., James E, and Z. Ken, "The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US," Energy Policy, vol. 37, no. 2, pp. 387-399, 2009.
  8. International Energy Agency (IEA). "Energy technology perspectives 2008: scenarios and strategies to 2050." Paris, France: International Energy Agency, IEA/OECD; 2008. p. 1–650.
  9. R. M. Swanson, "Photovoltaics Power Up", Science, vol. 324, no. 5929, pp. 891 -892, May 2009
  10. J. B. Lesourd, and S. U. Park, "The Economics of Grid-Connected Electricity Production from Solar Photovoltaic Systems", Environmental Modelling and Software, JEL Classification: Q3,Q01,Q42
  11. Lazard, pp1 -126, June 2009.
  12. R. Gottschalg, D. G. Infield, and M. J. Kearney, "Experimental study of variations of the solar spectrum of relevance to thin film solar cells," Solar Energy Materials and Solar Cells, vol. 79, no. 4, pp. 527-537, Sep. 2003.
  13. John Farrell, "Hourly Electricity Pricing Boosts Value of Distributed Solar by 33 Percent ," http://web.archive.org/web/20150426102054/http://www.renewableenergyworld.com/rea/blog/post/2012/01/hourly-electricity-pricing-boosts-value-of-distributed-solar-by-33
  14. M. Vázquez and I. Rey‐Stolle, "Photovoltaic module reliability model based on field degradation studies," Progress in Photovoltaics: Research and Applications, vol. 16, no. 5, pp. 419-433, Aug. 2008.
  15. S. H. Sevilgen, H. Hüseyin Erdem, B. Cetin, A. Volkan Akkaya, and A. Dagˇdaş, "Effect of economic parameters on power generation expansion planning," Energy Conversion and Management, vol. 46, no. 11–12, pp. 1780-1789, Jul. 2005.
  16. Y. Chi-Jen, "Reconsidering solar grid parity," Energy Policy, vol. 38, no. 7, pp. 3270-3273, Jul. 2010
  17. S. B. Darling, F. You, T. Veselka, and A. Velosa, "Assumptions and the levelized cost of energy for photovoltaics," Energy Environ. Sci., vol. 4, no. 9, pp. 3133-3139, Aug. 2011.
  18. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, "Photovoltaic Technology: The Case for Thin-Film Solar Cells," Science, vol. 285, no. 5428, pp. 692 -698, Jul. 1999.
  19. M. A. Green, "Thin-film solar cells: review of materials, technologies and commercial status," Journal of Materials Science Materials in Electronics, vol. 18, no. S1, pp. 15-19, 2007.
  20. P. P. Singh and S. Singh, "Realistic generation cost of solar photovoltaic electricity," Renewable Energy, vol. 35, no. 3, pp. 563-569, Mar. 2010.<ref>==== Abstract: Solar photovoltaic (SPV) power plants have long working life with zero fuel cost and negligible maintenance cost but requires huge initial investment. The generation cost of the solar electricity is mainly the cost of financing the initial investment. Therefore, the generation cost of solar electricity in different years depends on the method of returning the loan. Currently levelized cost based on equated payment loan is being used. The static levelized generation cost of solar electricity is compared with the current value of variable generation cost of grid electricity. This improper cost comparison is inhibiting the growth of SPV electricity by creating wrong perception that solar electricity is very expensive. In this paper a new method of loan repayment has been developed resulting in generation cost of SPV electricity that increases with time like that of grid electricity. A generalized capital recovery factor has been developed for graduated payment loan in which capital and interest payment in each installment are calculated by treating each loan installment as an independent loan for the relevant years. Generalized results have been calculated which can be used to determine the cost of SPV electricity for a given system at different places. Results show that for SPV system with specific initial investment of 5.00 $/kWh/year, loan period of 30 years and loan interest rate of 4% the levelized generation cost of SPV electricity with equated payment loan turns out to be 28.92 ¢/kWh, while the corresponding generation cost with graduated payment loan with escalation in annual installment of 8% varies from 9.51 ¢/kWh in base year to 88.63 ¢/kWh in 30th year. So, in this case, the realistic current generation cost of SPV electricity is 9.51 ¢/kWh and not 28.92 ¢/kWh. Further, with graduated payment loan, extension in loan period results in sharp decline in cost of SPV electricity in base year. Hence, a policy change is required regarding the loan repayment method. It is proposed that to arrive at realistic cost of SPV electricity long-term graduated payment loans may be given for installing SPV power plants such that the escalation in annual loan installments be equal to the estimated inflation in the price of grid electricity with loan period close to working life of SPV system. ==== Guidelines for the economic evaluation of building-integrated photovoltaic power systems<ref>P. Eiffert, L. ImaginIt, I. E. A. P. P. Systems, and N. R. E. L. (US), Guidelines for the economic evaluation of building-integrated photovoltaic power systems. National Renewable Energy Laboratory, 2003.
  21. S. Kaplan, "Power Plants: Characteristics and Costs," Congressional Research Service, 2008.
  22. K. Ardani and R. Margolis, "2010 Solar technologies market report," NREL, 2010.
  23. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 37)," Progress in Photovoltaics: Research and Applications, vol. 19, no. 1, pp. 84–92, Jan. 2011.
  24. Hydro-Québec. 2010 comparison of electricity prices in major north American cities; October 2010. p. 1–79.
  25. P. Denholm and R. M. Margolis, "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, vol. 35, no. 5, pp. 2852–2861, May 2007.
  26. Allen Zielnik, Atlas Material Testing, 2009. PV Durability and Reliability Issues,Photovoltaics World Magazine, Nov/Dec 2009 - Volume 1 Issue 5,December 3, 2009
  27. Vasilis Fthenakis, Sustainability of photovoltaics: The case for thin-film solar cells, Renewable and Sustainable Energy Reviews, Volume 13, Issue 9, December 2009, Pages 2746-2750
  28. John H. Wohlgemuth, 2003.Long Term Photovoltaic Module Reliability,NCPV and Solar Program Review Meeting 2003, NREL/CD-520-33586 pp 179-183.
  29. Nick Bosco. (S. Kurtz) 2010.Reliability Concerns Associated with PV Technologies. National Renewable Energy Laboratory
  30. J. Wohlgemuth, "Reliability of PV Systems, Reliability of Photovoltaic Cells, Modules, Components and Systems," edited by Neelkanth G. Dhere, Proc. of SPIE ,Vol. 7048, 704802-1, (2008).
  31. J. M. Pearce, "Photovoltaics - A Path to Sustainable Futures". Futures, Vol. 34, No. 7, pp. 663-674, 2002.
  32. J. W. Arnulf, "Current Status of Photovoltaics and Market Developments.", Inter PV vol. 2 no. 6 p. 68-72, Infothe Publishing Group, 2010.
  33. J. M. Pearce, and P. J. Harris,"Reducing green house gas emissions by inducing energy conservation and distributed generation from elimination of electric utility customer charges", Vol. 35, Issue 12, Dec 2007, Energy Policy.
  34. NREL

Utility Data New York[edit | edit source]

Central Hudson Gas & Electric[edit | edit source]

Con Edison of New York[edit | edit source]

Jamestown board of public utilities[edit | edit source]

Electric Commision Mohawk New York[edit | edit source]

National Grid[edit | edit source]

New York State Electric and Gas Corporation[edit | edit source]

Orange and Rockland, Pike County Light & Power Company[edit | edit source]

Pennsylvania Electric Company[edit | edit source]

Rochester Gas and Electric Company[edit | edit source]

[Utility Data FL][edit | edit source]

City of Fortmeade[edit | edit source]

Ready Creek Improvement District[edit | edit source]

City of Burtow Utilities[edit | edit source]

Orlando Utilities Commission[edit | edit source]

Talquin Electric Co-op, inc[edit | edit source]

Tampa Electric Company[edit | edit source]

Tri-county Electric Cooperative Inc.[edit | edit source]

Choctawatche Electric Coop, Inc.[edit | edit source]

Contributors[edit | edit source]

Yongheg Guo Ram Kotecha

FA info icon.svg Angle down icon.svg Page data
License CC-BY-SA-4.0
Language English (en)
Related 0 subpages, 1 pages link here
Impact 211 page views
Created April 30, 2022 by Irene Delgado
Modified June 9, 2023 by Felipe Schenone
Cookies help us deliver our services. By using our services, you agree to our use of cookies.