Literature

Laser-induced breakdown spectroscopy of silicate, vanadate and sulfide rocks[1][edit | edit source]

Abstract: Laser-induced breakdown spectroscopy (LIBS) in air at atmospheric pressure has been used to study four geological samples belonging to different structural families. Atomic emission spectra of vanadinite, pyrite, garnet and a type of quartz (compostela's quartz) are shown. The 532 nm line of a Nd:YAG laser at an irradiance of 18 × 1011 W cm−2 was used. The precise focus of the beam allowed microanalysis of a 0.02 mm2 surface area working in single-laser shot mode. The use of an intensified gateable charge-coupled-device (CCD) detector permitted time-resolved studies. The spectral lines have been assigned to transitions in the neutral charge state of the corresponding atom of the material under investigation. The behavior of different transitions with time delay are shown. In experiments, minor components contained in several minerals have been detected. This fact has been used to demonstrate the applicability of the technique to characterize and identify similar minerals.

  • emission of neutrals dominate
  • even small differences can separate samples

Semi-quantitative Laser-Induced Breakdown Spectroscopy for Analysis of Mineral Drill Core[2][edit | edit source]

Abstract: An investigation is reported in the use of time-resolved laser-induced breakdown spectroscopy (LIBS) for mineral assaying applications. LIBS has potential for the rapid on-line determination of the major and minor constituents of mineral drill core samples. In this work a Q-switched Nd:YAG laser is used to test as-received lengths of drill core, with remote LIBS signal acquisition via a bare optical fiber bundle coupled to a spectrometer. A novel normalization scheme, based on integrating the total plasma emission, is demonstrated as a method for correction of signal variations due to the uneven surface geometry of rock. Averaged intensities of atomic emission for the elements Cr, Cu, Fe, Mn, and Ni show good linear correlations, with coefficients of R2 = 0.92-0.99, against laboratory assay values. Limitations in the comparison of the results of surface analysis to bulk compositions are discussed, with emphasis on mining applications of LIBS.

  • Factors that limit the quality are listed
  • Reasoning for using just the fiber
  • Surface vs. bulk measurements
  • Original source for whole spectrum normalization in LIBS

Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy[3][edit | edit source]

Abstract: Laser-induced plasma spectroscopy (LIPS) has been evaluated for the analysis of manganese and silicon in iron ore using a Nd:YAG laser at 1064 nm. Optimal experimental conditions for analysis were evaluated, including repetition rate, number of laser sparks on sample, and laser energy. Gate delay and gate width time were also optimized to obtain the best signal to noise ratio (SNR) and precision. The manganese and silicon atomic emission lines at 403.45 and 251.6 nm were used. The results for samples applied to double-sided tape were compared to those obtained by pressing samples into pellets and no statistical differences between them were found. The precision of samples on tape for intra-measurements (precision of averages on one slide) and inter-measurements (precision of averages between slides) were studied.

  • Optimal measurement parameters for Mn and Si

Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system[edit | edit source]

Abstract: An instrumentation variation on laser-induced breakdown spectroscopy (LIBS) is described that allows simultaneous determination of all detectable elements using a multiple spectrograph and synchronized, multiple CCD spectral acquisition system. The system is particularly suited to the rapid analysis of heterogeneous materials such as coal and mineral ores. For the analysis of a heterogeneous material the acquisition cycle typically stores 1000 spectra for subsequent filtering and analysis. The incorporation of an effective data analysis methodology has been critical in achieving both accurate and reproducible results in the analysis of powders with the technology. Using naturally occurring gypsum as the optimization matrix, various data analysis techniques have been investigated including: using pulse-to-pulse internal standardisation; data filtering; and spectral deconvolution. The incorporation of normalization of the elemental emission to the total plasma emission intensity has been found to yield the single biggest improvement in accuracy and precision. Spectral deconvolution has been found to yield further improvement and is particularly relevant to the analysis of complex materials such as black coal. The use of pulse-to-pulse intensity normalization has the further benefit of extending the period between instrument recalibration, thus enhancing the ease of use of the device. The benefit of the optimized data analysis methodology is revealed in the determination of eight elemental components of gypsum (Na, Ca, Mg, Fe, Al, Si, Ti and K) where a typical absolute analysis accuracy of ±10% is obtained. These results compare favourably to analysis by conventional techniques for these materials. The analysis accuracy and repeatability is further demonstrated by the determination of the concentrations of these elements in a black coal sample.

  • No technology is suitable for all elements
  • Reducing depence on analytical services
  • Worker healt and safety
  • Mostly used: acid extraction, XRF, arc-sparc, PGNAA
  • Beats XRF with light elements, PGNAA with trace elements
  • Little sample preparation
  • Samples: low-ash lignites
  • Simutanious elemental analysis to avoid errors (vs. multiple single elem. anal.)
  • Gypsum as primary test matrix
  • Difficulty in quantitative LIBS: Matrix effect, sample heterogeneity, instability of plasmas
  • Use multiple spectrometers
  • Samples on translation stage
  • Delay 1 µs, each CCD with fixed exposure
  • 1 pulse/spectra, 250 spectra collected, standard samples
  • Normalizing over the whole spectra (laser P fluctuations and matrix)
  • Spectral deconvolution (good for low res spectra)
  • RSD as figure of merit and calib. Curve
  • 10 fold enhancement to res. With spec. deconv.
  • For high concentration (Si), non-linear curve, use lower power or pick weaker line
  • BG-normalization works, deconvolution + Explanation for bg-correction: Laser E fluctuation compensated
  • Eliminating outliers +-40 median works (also explanation)
  • "pulse-to-pulse plasma instability is one of the key parameters effecting the accuracy in the LIBS measurement"

On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection[4][edit | edit source]

Abstract: Chemical composition of iron-ore pellets has a significant impact on their quality and commercial value. Laser-induced breakdown spectroscopy (LIBS) technique has been extensively tested on line, at industrial pelletizing plants. It proved successful at measuring Si, Ca, Mg, Al and graphitic C contents of different iron-ore slurries prior to filtration and pelletizing. For this specific application, the sensitivity of the technique compares with the one obtained from dedicated chemical laboratories. But the real advantage of LIBS technique is that the results are delivered continuously and in real time compared to periodic sampling and standard analytical delays of more than 1 h. Consequently, LIBS gives a more representative reading of the state of the process — particularly when rapid perturbations occur — and allows process optimization and quality improvement. In this work, special attention was given to the fact that the detection system, with specific settings, gives direct measurement for either graphitic carbon (coke breeze) or total carbon (coke breeze, flux and natural carbonate). Graphitic carbon content is a key parameter for both the pellet production cost and its final commercial value. LIBS is a sensitive technique that can detect small variations. But matrix effects affect the spectral lines and it is sometimes difficult to establish universal calibration curve. This problem is partially overcome by the use of a multivariable calibration that corrects for matrix effects and evaluates a confidence level based on expertise for each measurement. Current research is aimed at the development of commercial equipment for continuous industrial use.

  • On-line ,measurement
  • Matrix correction
  • 3 different setups

Development of a method for automated quantitative analysis of ores using LIBS[edit | edit source]

Abstract: This paper reports the development of a method for real-time automated quantitative analysis of mineral ores using a commercial laser-induced breakdown spectroscopy instrument, TRACER™ 2100, fitted with a recently developed computer controlled auto-sampler. The auto-sampler permits the execution of methods for performing calibrations and analysis of multiple elements on multiple samples. Furthermore, the analysis is averaged over multiple locations on each sample, thus compensating for heterogeneous morphology. The results for phosphate ore are reported here, but similar methods are being developed for a range of ores and minerals. Methods were developed to automatically perform metallic element calibrations for supplied phosphate ore samples containing known concentrations of the following minerals: P2O5, CaO, MgO, SiO2 and Al2O3. A spectral line for each desired element was selected with respect to the best combination of peak intensity and minimum interferences from other lines. This is a key step, because of the observed matrix dependence of the technique. The optimum combination of the time interval between the laser firing (plasma formation), signal detection, and the duration of the optical detection was then determined for each element, to optimize spectral line intensity and resolution. The instrument was capable of analyzing the required elements in the phosphate ore samples supplied with 2–4% relative standard deviations for most elements. Calibrations were achieved for P, Ca, Mg, Al and Si with linear regression coefficients of 0.985, 0.980, 0.993, 0.987 and 0.985, respectively. Preparation and analysis time for each sample was less than 5 min.

  • Phosphate ore
  • Commercial equipment
  • Standard samples for calib.
  • ICP-AES for comparison
  • classification in the field possible

Sulfide mineral identification using laser-induced plasma spectroscopy[edit | edit source]

Abstract: Sulfide minerals in rock samples were identified with laser-induced plasma spectroscopy (LIPS) in the near vacuum ultraviolet spectral region. Reference spectra of pyrite, pyrrhotite, chalcopyrite, sphalerite, barite, calcite and dolomite were applied to classification of minerals in sulfur-bearing drill core samples. On the basis of the results mineral distributions in the sample were estimated. The potential of the LIPS method for in situ analysis is discussed.

  • Measuring sulphide minerals in VUV-region
  • Samples were drill cores, 3 samples, 5cm line, 0.2cm spatial res.
  • Ref. samples from GTK
  • Linear fitting with non.neg. const. highest fitting = right group
  • Purge gas needed
  • Grain size can be estimated
  • 6-8% not identified
  • Delay 170 nm, gate width 250 ns

New near-infrared LIBS detection technique for sulfur[5][edit | edit source]

Abstract: Sulfur has been detected in a spectral window (around 868 nm) previously unexplored by laser-induced breakdown spectrometry (LIBS), using an ablation laser with an ultraviolet wavelength, a gated detector, and inert ambient gas at a low, controlled pressure. This spectral window enables new-generation gated iCCD cameras to be used, which have adequate quantum efficiencies up to 900 nm. Application of our technique can substantially improve signal strength and thus extends the ability of LIBS to detect many nonmetallic elements.

  • 868 nm line for sulfur

Laser-Induced Breakdown Spectroscopy of Composite Samples:  Comparison of Advanced Chemometrics Methods[edit | edit source]

Abstract: Laser-induced breakdown spectroscopy is used to measure chromium concentration in soil samples. A comparison is carried out between the calibration curve method and two chemometrics techniques:  partial least-squares regression and neural networks. The three quantitative techniques are evaluated in terms of prediction accuracy, prediction precision, and limit of detection. The influence of several parameters specific to each method is studied in detail, as well as the effect of different pretreatments of the spectra. Neural networks are shown to correctly model nonlinear effects due to self-absorption in the plasma and to provide the best results. Subsequently, principal components analysis is used for classifying spectra from two different soils. Then simultaneous prediction of chromium concentration in the two matrixes is successfully performed through partial least-squares regression and neural networks.

  • Standard calibration curve, PLS-regression and neural networks
  • NN gives best results
  • PCA for classification

Laser-induced breakdown spectroscopy – An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications[edit | edit source]

Abstract: Laser induced breakdown spectroscopy (LIBS) is a simple spark spectrochemical sensor technology in which a laser beam is directed at a sample surface to create a high-temperature microplasma and a detector used to collect the spectrum of light emission and record its intensity at specific wavelengths. LIBS is an emerging chemical sensor technology undergoing rapid advancement in instrumentation capability and in areas of application. Attributes of a LIBS sensor system include: (i) small size and weight; (ii) technologically mature, inherently rugged, and affordable components; (iii) real-time response; (iv) in situ analysis with no sample preparation required; (v) a high sensitivity to low atomic weight elements which are difficult to determine by other field-portable sensor techniques, and (vi) point sensing or standoff detection. Recent developments in broadband LIBS provide the capability for detection at very high resolution (0.1 nm) of all elements in any unknown target material because all chemical elements emit in the 200–980 nm spectral region. This progress portends a unique potential for the development of a rugged and reliable field-portable chemical sensor that has the potential to be utilized in variety of geochemical, mineralogical, and environmental applications.

  • LIBS fundamentals and some applications

Phosphate ore beneficiation via determination of phosphorus-to-silica ratios by Laser Induced Breakdown Spectroscopy[6][edit | edit source]

Abstract: We report development and application of an in-situ applicable method to determine phosphate ore rock quality based on Laser-Induced Breakdown Spectroscopy (LIBS). This is an economically viable method for real-time evaluation of ore phosphate rocks in order to separate high-silica pebbles prior to deep beneficiation. This is achieved by monitoring relative emission line intensities from key probe elements via single laser ablation shots: the ratio of the phosphorous to silica line intensities (P/Si ratio) provides a simple and reliable indicator of ore rock quality. This is a unique LIBS application where no other current analytical spectroscopic method (ICP or XRF) can be applied. Method development is discussed, and results with actual ore samples are presented.

  • Nice application with LIBS that can't be done with other methods
  • phosphate rocks

Laser-induced breakdown spectroscopy analysis of complex silicate minerals—beryl[7][edit | edit source]

Abstract: Beryl (Be3Al2Si6O18) is a chemically complex and highly compositionally variable gem-forming mineral found in a variety of geologic settings worldwide. A methodology and analytical protocol were developed for the analysis of beryl by laser-induced breakdown spectroscopy (LIBS) that minimizes the coefficient of variance for multiple analyses of the same specimen. The parameters considered were laser energy/pulse, time delay and crystallographic orientation. Optimal analytical conditions are a laser energy/pulse of 102 mJ and a time delay of 2 μs. Beryl compositions measured parallel and perpendicular to the c axis were identical within analytical error. LIBS analysis of 96 beryls from 16 countries (Afghanistan, Brazil, Canada, China, Colombia, India, Ireland, Italy, Madagascar, Mexico, Mozambique, Namibia, Norway, Russia, Tanzania and United States), Antarctica, and ten US states (AZ, CA, CO, CT, ID, ME, NC, NH, NM and UT) were undertaken to determine whether or not LIBS analysis can be used to determine the provenance of gem beryl.

  • Three factors to contribute precicion
  • Min/fluid inclusions
  • Mineral zoning
  • position of plasma volume formation

Laser induced breakdown spectroscopy for bulk minerals online analyses[edit | edit source]

Abstract: The purpose of the work was to prove the ability of LIBS to provide on-line analyses for raw ores in field conditions. An industrial LIBS machine was developed and successfully tested for on-belt evaluation of phosphate measuring Mg, Fe, Al, Bone Phosphate Lime (BPL), Insoluble phase and Metal Impurity Ratio (MER) and of coal measuring its ash content. The comparison of LIBS on-line data with control analyses revealed good correlation, which corresponds to the required detection limits and accuracy. With frequent elemental data from a LIBS system, process engineers have the tools to best optimize the process. These processes could be minerals blending and separation to meet customer specifications, monitoring and controlling the efficiency of a minerals process, or a minerals accounting function.

  • Conveyor belt application
  • Can compeate with PGNAA
  • Surface represents the volume
  • Phosphates

Laser-induced breakdown spectroscopy analysis of minerals: Carbonates and silicates[edit | edit source]

Abstract: Laser-induced breakdown spectroscopy (LIBS) provides an alternative chemical analytical technique that obviates the issues of sample preparation and sample destruction common to most laboratory-based analytical methods. This contribution explores the capability of LIBS analysis to identify carbonate and silicate minerals rapidly and accurately. Fifty-two mineral samples (18 carbonates, 9 pyroxenes and pyroxenoids, 6 amphiboles, 8 phyllosilicates, and 11 feldspars) were analyzed by LIBS. Two composite broadband spectra (averages of 10 shots each) were calculated for each sample to produce two databases each containing the composite LIBS spectra for the same 52 mineral samples. By using correlation coefficients resulting from the regression of the intensities of pairs of LIBS spectra, all 52 minerals were correctly identified in the database. If the LIBS spectra of each sample were compared to a database containing the other 51 minerals, 65% were identified as a mineral of similar composition from the same mineral family. The remaining minerals were misidentified for two reasons: 1) the mineral had high concentrations of an element not present in the database; and 2) the mineral was identified as a mineral with similar elemental composition from a different family. For instance, the Ca–Mg carbonate dolomite was misidentified as the Ca–Mg silicate diopside. This pilot study suggests that LIBS has promise in mineral identification and in situ analysis of minerals that record geological processes.

  • Nice set of samples
  • Classification with Correlation coefficients
  • 100% classification rate against spec. library

Multi-element and mineralogical analysis of mineral ores using laser induced breakdown spectroscopy and chemometric analysis[edit | edit source]

Abstract: In the mining industry the quality and extent of an ore body is determined on the basis of routine assays conducted on drill core and chip samples. Both the elemental composition and the mineralogical classification are important in the characterisation of an ore body for commercial exploitation. Mining industry laboratories typically analyse large numbers of samples from both exploration and mine production environments.

At CSIRO we have explored the application of chemometric methods of analysis in combination with laser induced breakdown spectroscopy (LIBS) in order to produce routine quantitative analysis of several ore types including iron, nickel and lead/zinc ores. In particular, principal components regression (PCR) has been applied to perform multi-element analysis of iron ore samples from Australia and West Africa. Calibration models for iron (4.8% Av. Relative Error), aluminium (2.2%), silicon (3.7%) and potassium (1.4%) were determined for the Australian ores. In addition phosphorous measurements were made at trace level for samples from West Africa (5.5% Av. Relative Error). LIBS measurements of segments of a nickel drill core were also analysed using PCR.

Mineralogical classification using a combination of LIBS and principal components analysis (PCA) has also been explored. Broad discrimination of ore mineralogy was demonstrated on the basis of the PCA of LIBS spectra in selected emission wavelength bands. The combination of PCA and PCR offers potential for both broad mineralogical and elemental analysis for the minerals industry in exploration and in mine production for the on-line monitoring of ore quality.

  • Good discussion about trace elements
  • PCA, PCR for ore mineralogy

LIBS analysis of geomaterials: Geochemical fingerprinting for the rapid analysis and discrimination of minerals[edit | edit source]

Abstract: Laser-induced breakdown spectroscopy (LIBS) is a simple atomic emission spectroscopy technique capable of real-time, essentially non-destructive determination of the elemental composition of any substance (solid, liquid, or gas). LIBS, which is presently undergoing rapid research and development as a technology for geochemical analysis, has attractive potential as a field tool for rapid man-portable and/or stand-off chemical analysis. In LIBS, a pulsed laser beam is focused such that energy absorption produces a high-temperature microplasma at the sample surface resulting in the dissociation and ionization of small amounts of material, with both continuum and atomic/ionic emission generated by the plasma during cooling. A broadband spectrometer-detector is used to spectrally and temporally resolve the light from the plasma and record the intensity of elemental emission lines. Because the technique is simultaneously sensitive to all elements, a single laser shot can be used to track the spectral intensity of specific elements or record the broadband LIBS emission spectra, which are unique chemical 'fingerprints' of a material. In this study, a broad spectrum of geological materials was analyzed using a commercial bench-top LIBS system with broadband detection from ∼200 to 965 nm, with multiple single-shot spectra acquired. The subsequent use of statistical signal processing approaches to rapidly identify and classify samples highlights the potential of LIBS for 'geochemical fingerprinting' in a variety of geochemical, mineralogical, and environmental applications that would benefit from either real-time or in-field chemical analysis.

  • LIBS fundamentals
  • Matrix effect
  • Potential applications
  • Classification with CC

Laser-induced breakdown spectroscopy for on-line sulfur analyses of minerals in ambient conditions[edit | edit source]

Abstract: Different options of laser-induced breakdown spectroscopy arrangements for on-line analyses of sulfur in minerals in ambient conditions have been investigated. Depending on the sulfur concentration and the sample type, the following conditions appear as optimal: for concentration values of 20–30% (for example Cu and Ni ores, gypsum, anhydrite, and barite) it is the single-pulse option with emission in near infra-red; for concentration values of 5–10% it is the double-pulse option with emission in the green; for concentration values down to 0.2% (for example in coal) it is the single-pulse option in near VUV with a N2 filled spectrometer.

  • Double-pulse gives gain (2.5-10x)
  • Best solution: single pulse in VUV with purge gas

Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification[8][edit | edit source]

Abstract: A large suite of natural carbonate, fluorite and silicate geological materials was studied using laser-induced breakdown spectroscopy (LIBS). Both single- and double-pulse LIBS spectra were acquired using close-contact benchtop and standoff (25 m) LIBS systems. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to identify the distinguishing characteristics of the geological samples and to classify the materials. Excellent discrimination was achieved with all sample types using PLS-DA and several techniques for improving sample classification were identified. The laboratory double-pulse LIBS system did not provide any advantage for sample classification over the single-pulse LIBS system, except in the case of the soil samples. The standoff LIBS system provided comparable results to the laboratory systems. This work also demonstrates how PCA can be used to identify spectral differences between similar sample types based on minor impurities.

  • comparison of 3 different methods: Single pulse, double pulse, stand-off
  • PCA and PLS-DA
  • Soil samples were hard to classify

Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy[9][edit | edit source]

Abstract: A double pulse-laser induced breakdown spectroscopy (DP-LIBS) was used to determine arsenic (As) concentration in 16 soil samples collected from 5 different mine tailing sites in Korea. We showed that the use of double pulse laser led to enhancements of signal intensity (by 13% on average) and signal-to-noise ratio of As emission lines (by 165% on average) with smaller relative standard deviation compared to single pulse laser approach. We believe this occurred because the second laser pulse in the rarefied atmosphere produced by the first pulse led to the increase of plasma temperature and populations of exited levels. An internal standardization method using a Fe emission line provided a better correlation and sensitivity between As concentration and the DP-LIBS signal than any other elements used. The Fe was known as one of the major components in current soil samples, and its concentration varied not substantially. The As concentration determined by the DP-LIBS was compared with that obtained by atomic absorption spectrometry (AAS) to evaluate the current LIBS system. They are correlated with a correlation coefficient of 0.94. The As concentration by the DP-LIBS was underestimated in the high concentration range (>1000 mg-As/kg). The loss of sensitivity that occurred at high concentrations could be explained by self-absorption in the generated plasma.

  • D-pulse system
  • Compared to AAS
  • D-LIBS underestimated high consentrations (self-abs.)

Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet[10][edit | edit source]

Abstract: Laser-induced breakdown spectroscopy (LIBS) is an analytical technique real-time geochemical analysis that is being developed for portable use outside of the laboratory. In this study, statistical signal processing and classification techniques were applied to single-shot, broadband LIBS spectra, comprising measured plasma light intensities between 200 and 960 nm, for a suite of 157 garnets of different composition from 92 locations worldwide. Partial least squares discriminant analysis was applied to sets of 25 LIBS spectra for each garnet sample and used to classify the garnet samples based on composition and geographic origin. Careful consideration was given to the cross-validation procedure to ensure that the classification algorithm is robust to unseen data. The results indicate that broadband LIBS analysis can be used to discriminate garnets of different composition and has the potential to discern geographic origin.

  • PLS-DA
  • PCA for visualize
  • 98% acc. for different groups

References[edit | edit source]

  1. Vadillo, J. M., and J. J. Laserna. "Laser-induced breakdown spectroscopy of silicate, vanadate and sulfide rocks." Talanta 43.7 (1996): 1149-1154.
  2. Bolger, J. A. "Semi-quantitative laser-induced breakdown spectroscopy for analysis of mineral drill core." Applied Spectroscopy 54.2 (2000): 181-189.
  3. Sun, Q., et al. "Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy." Analytica Chimica Acta 413.1-2 (2000): 187-195.
  4. Barrette, Louis, and Simon Turmel. "On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection." Spectrochimica Acta Part B: Atomic Spectroscopy 56.6 (2001): 715-723.
  5. Asimellis, George, Aggelos Giannoudakos, and Michael Kompitsas. "New near-infrared LIBS detection technique for sulfur." Analytical and bioanalytical chemistry 385.2 (2006): 333-337.
  6. Asimellis, George, Aggelos Giannoudakos, and Michael Kompitsas. "Phosphate ore beneficiation via determination of phosphorus-to-silica ratios by Laser Induced Breakdown Spectroscopy." Spectrochimica Acta Part B: Atomic Spectroscopy 61.12 (2006): 1253-1259.
  7. McMillan, Nancy J., et al. "Laser-induced breakdown spectroscopy analysis of complex silicate minerals—beryl." Analytical and bioanalytical chemistry 385.2 (2006): 263-271.
  8. Gottfried, Jennifer L., et al. "Multivariate analysis of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification." Spectrochimica Acta Part B: Atomic Spectroscopy 64.10 (2009): 1009-1019.
  9. Kwak, Ji-hyun, et al. "Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy." Spectrochimica Acta Part B: Atomic Spectroscopy 64.10 (2009): 1105-1110.
  10. Alvey, Daniel C., et al. "Laser-induced breakdown spectroscopy-based geochemical fingerprinting for the rapid analysis and discrimination of minerals: the example of garnet." Applied Optics 49.13 (2010): C168-C180.
FA info icon.svg Angle down icon.svg Page data
Authors L. Kangas
License CC-BY-SA-3.0
Language English (en)
Related 1 subpages, 2 pages link here
Impact 519 page views (more)
Created April 18, 2018 by L. Kangas
Last modified September 19, 2024 by StandardWikitext bot
Cookies help us deliver our services. By using our services, you agree to our use of cookies.