This article compares the bladed rotors for hydro energy conversion systems.

Type Moment of force output/size of device Fabrication requirements Difficulty of production Durability Difficulty of repair Production cost Hazard to fish ?
Devices for continous flow (rivers, ...)
Hydraulic wheels
Undershot water wheel (general) ? ? (20% efficient or less)[1][2] ? ?? ? ? ? no (AC)
Undershot water wheel (Sabegien) ? ? (?% efficient)[3][4] ? ?? ? ? ? no (AC)
Undershot water wheel (Poncelet) ? ? (?% efficient)[5][6] ? ?? ? ? ? no (AC)
Undershot water wheel (Zuppinger) ? ? (?% efficient)[7][8] ? ?? ? ? ? no (AC)
Breastshot water wheel (general) ? ? (35-45% efficient) ? ?? ? ? ? yes (UP)
Overshot water wheel (general) ? ? ( 55-70% efficient) ? ?? ? ? ? yes (UP)
Overshot water wheel (Pitchback) ? ? (55-65?% efficient) ? ?? ? ? ? yes (UP)
Devices for tides and tidal streams
Francis turbine ? ? ? ?? ? ? ? ?
Kaplan turbine ? ? ? ?? ? ? ? ?
Propeller turbine ? ? ? ?? ? ? ? ?
Bulb turbine ? ? ? ?? ? ? ? ?
Tube turbine ? ? ? ?? ? ? ? ?
Straflo turbine ? ? ? ?? ? ? ? ?
Tyson turbine ? ? ? ?? ? ? ? ?
Archimedean screw turbine ? ? ? ?? ? ? ? ?
Pelton turbine ? ? ? ?? ? ? ? ?
Turgo turbine ? ? ? ?? ? ? ? ?
Michell-Banki turbine ? ? ? ?? ? ? ? ?

Note: AC means in all circumstances UP means unless precautions are taken (eg creation of a tail race and lockoff from fish of this tail race by a grating)

References[edit | edit source]

See also[edit | edit source]

Page data
Keywords comparisons, energy, microhydro, turbines
Authors KVDP
Published 2009
License CC-BY-SA-4.0
Impact Number of views to this page and its redirects. Updated once a month. Views by admins and bots are not counted. Multiple views during the same session are counted as one. 338
Issues Automatically detected page issues. Click on them to find out more. They may take some minutes to disappear after you fix them. No main image
Cookies help us deliver our services. By using our services, you agree to our use of cookies.