Get our free book (in Spanish or English) on rainwater now - To Catch the Rain.

Category:242 TRIZ 3D printers

From Appropedia
Jump to: navigation, search
Hotend.JPG This page is part of a Principia course ENGR242: 3-D Printing Technology

Please leave comments using the discussion tab. The course runs in the Spring semester. It is not open edit.

TRIZ a Russian acronym, literally: "theory of the resolution of invention-related tasks") is "a problem-solving, analysis and forecasting tool derived from the study of patterns of invention in the global patent literature". TRIZ relies on 40 inventive principles.

To give this a try as an engineering student please do the following:

  1. Form groups of 2
  2. Each group will take 3 principles and attempt to apply it to forecasting obvious inventions for future and (possibly) existing 3-D printer technologies. For more information on your principle click here or more examples here.
  3. Add to Triz principles wiki pages by clicking on the links below.
  4. Each person sign it with ~~~~ on the page
  5. List at least twenty-five ways to make a novel 3-D printer for each of your 3 principles.
  6. TRIZ uses this technical contradiction matrix, you can use these technical problems to find problems for your solutions:
    1. improve resolution (atomic)
    2. improve print speed (instantaneous)
    3. enhance material availability (all)
    4. reduce parts of the printer (1?)
    5. reduce costs of printer (free)
    6. reduce costs of materials (free)
    7. make it easier to use (McDonald's screen)
    8. make it easier to assemble (self)
    9. make it easier to maintain (none, unbreakable, self healing)
    10. make fully assembled products (anything - computer, car, smartphone, dinner)
    11. use functional printing materials (e.g. electronics)
    12. reduce waste (zero)
    13. use less energy (zero or ambient)
    14. quieter printing (soundless)
    15. ubiquitous printing (everywhere)
    16. print smaller (nanoscale)
    17. print bigger (apartment complex, Great Wall of China, planet?)
    18. enable auto calibration
    19. enable auto leveling
    20. enable auto monitoring
    21. enable quality control
    22. enable real-time feedback
    23. make it safer (infant approved)
    24. make is smell good (designer imposters?)
    25. make it from current waste products (CO2, flyash, spent fuel rods?)

Notice: Broad and/or obvious patent claims for 3-D printing technology may hamper the open-source 3-D printing community's ability to innovate. Previous work on an algorithm protected 3-D printing materials. This page is part of a Open Source 3-D Printing class project to investigate 3-D printing concepts using TRIZ and is presented here as a defensive publication of prior art to help identify obvious 'inventions' for 3-D printing.

Examiners: The ideas on this page dated April 2017 were developed by university students with less than a semester of formal 3-D printing experience (or by an instructor in class) and thus should be considered unpatentable because of obviousness to any person skilled in the art of additive manufacturing.
Appropedians: This page is open edit. Please fee free to add ideas and sign them below with ~~~~ or to use any of the ideas to built better open-source 3-D printers.

Pages in category "242 TRIZ 3D printers"

The following 40 pages are in this category, out of 40 total.