Get our free book (in Spanish or English) on rainwater now - To Catch the Rain.

Etch based anti-reflective coatings - Literature Review

From Appropedia
Jump to: navigation, search
Open-pv.png This page is part of an MTU graduate course MY5490/EE5490: Solar Photovoltaic Science and Engineering. Both the course documentation and the course generated content is open source. However, the course runs over Spring semesters during this time it is not open edit. Please leave comments using the discussion tab.



Searches[edit]

  • Antireflective coating photovoltaic
  • antireflective coating solar
  • glass texturization solar

Misc relevant information[edit]

Two ways to classify etch based ARCs:

  1. Dry or wet etch
  2. Maskless or mask assisted

Journals[edit]

  • Nanotechnology
  • Materials Science and Engineering: B
  • Solar Energy Materials and Solar Cells
  • Solar Energy Materials
  • Solar Energy
  • Renewable Energy
  • Small (ambitious choice - and doesn't exactly fit in)
  • Thin Solid Films (may not be the best fit)

Introduction and background[edit]

1.Review paper on ARCs:

Raut, H.K., Ganesh, V.A., Nair, A.S. and Ramakrishna, S., 2011. Anti-reflective coatings: A critical, in-depth review. Energy & Environmental Science, 4(10), pp.3779-3804. [1]

  • only section 7.2.1 is relevant
  • describes metal assisted chemical etching (MACE) in detail
  • Introduces laser ablation
  • lots of references in this section that can contribute towards introduction

5. sub wavelength structures

Sahoo, K.C., Lin, M.K., Chang, E.Y., Lu, Y.Y., Chen, C.C., Huang, J.H. and Chang, C.W., 2009. Fabrication of antireflective sub-wavelength structures on silicon nitride using nano cluster mask for solar cell application. Nanoscale research letters, 4(7), p.680. [2]

  • new method - Ni nano clusters
  • annealed in forming gas - not available here.

6. Porous Si as ARC

Strehlke, S., Bastide, S., Guillet, J. and Levy-Clement, C., 2000. Design of porous silicon antireflection coatings for silicon solar cells. Materials Science and Engineering: B, 69, pp.81-86. [3]

  • electrochemical etching
  • 7% effective reflectance between 400 and 1000 nm

7. Optical absorption in nanopillars

Tsakalakos, L., Balch, J., Fronheiser, J., Shih, M.Y., LeBoeuf, S.F., Pietrzykowski, M., Codella, P.J., Korevaar, B.A., Sulima, O., Rand, J. and Davuluru, A., 2007. Strong broadband optical absorption in silicon nanowire films. J. Nanophotonics, 1(1), p.013552. [4]

  • nanostructure created by galvanic etching

8. Bottom up Si NW

Stelzner, T., Pietsch, M., Andrä, G., Falk, F., Ose, E. and Christiansen, S., 2008. Silicon nanowire-based solar cells. Nanotechnology, 19(29), p.295203. [5]

  • interesting process and background
  • epitaxial growth not possible at MTU at present


11. PR mask and RIE based ARC

Lalanne, P. and Morris, G.M., 1997. Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology, 8(2), p.53. [6]

13. Woelfle, M., Olliaro, P. and Todd, M.H., 2011. Open science is a research accelerator. Nature Chemistry, 3(10), p.745.

[7]

14. Baden, T., Chagas, A.M., Gage, G., Marzullo, T., Prieto-Godino, L.L. and Euler, T., 2015. Open Labware: 3-D printing your own lab equipment. PLoS Biol, 13(3), p.e1002086.

[8]

15. Pearce, J.M., 2012. Building research equipment with free, open-source hardware. Science, 337(6100), pp.1303-1304. [9]

16. Daniel K, F., 2012. Open-source hardware is a low-cost alternative for scientific instrumentation and research. Modern Instrumentation, 2012. [10]

18. Pearce, J.M., 2013. Open-source lab: How to build your own hardware and reduce research costs. Newnes. [11]

19. Woelfle, M., Olliaro, P. and Todd, M.H., 2011. Open science is a research accelerator. Nature Chemistry, 3(10), p.745. [12]

20. Rundle, G., 2014. A Revolution in the Making. Simon and Schuster. [13]

21. Pearce, J.M., 2014. Laboratory equipment: Cut costs with open-source hardware. Nature, 505(7485), pp.618-618. [14]

22. Pearce, J.M., 2015. Quantifying the value of open source hard-ware development. Modern Economy, 6(01), p.1. [15]

23. Zwicker, A.P., Bloom, J., Albertson, R. and Gershman, S., 2015. The suitability of 3D printed plastic parts for laboratory use. American Journal of Physics, 83(3), pp.281-285. [16]

24. Han, K.S., Shin, J.H. and Lee, H., 2010. Enhanced transmittance of glass plates for solar cells using nano-imprint lithography. Solar Energy Materials and Solar Cells, 94(3), pp.583-587. [17]

  • can do this with LIGA

25. Gombert, A., Glaubitt, W., Rose, K., Dreibholz, J., Bläsi, B., Heinzel, A., Sporn, D., Döll, W. and Wittwer, V., 2000. Antireflective transparent covers for solar devices. Solar Energy, 68(4), pp.357-360. [18]

  • porous media
  • periodic or stochastic subwavelength surface-relief structures

26. Wang, X. and Shen, J., 2010. Sol–gel derived durable antireflective coating for solar glass. Journal of sol-gel science and technology, 53(2), pp.322-327. [19]

  • TiO2 ARC by dip coating

36. Helsch, G. and Deubener, J., 2012. Compatibility of antireflective coatings on glass for solar applications with photocatalytic properties. Solar Energy, 86(3), pp.831-836. [20]

39. Verma, L.K., Sakhuja, M., Son, J., Danner, A.J., Yang, H., Zeng, H.C. and Bhatia, C.S., 2011. Self-cleaning and antireflective packaging glass for solar modules. Renewable Energy, 36(9), pp.2489-2493. [21]

44. Lampert, C.M., 1987. Advanced optical materials for energy efficiency and solar conversion. Solar & wind technology, 4(3), pp.347-379. [22]

49. Ackley, D.E. and Tauc, J., 1977. Silicon films as selective absorbers for solar energy conversion. Applied optics, 16(11), pp.2806-2809. [23]

Methods[edit]

2a. Biomimicry to make pillars

Li, Y., Zhang, J. and Yang, B., 2010. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today, 5(2), pp.117-127. [24]

  • uses biomimicry to make surface rough
  • dry etching to make high aspect ratio structures

2b. Xu, H., Lu, N., Qi, D., Hao, J., Gao, L., Zhang, B. and Chi, L., 2008. Biomimetic antireflective Si nanopillar arrays. Small, 4(11), pp.1972-1975. [25]

3. RIE based texturization

Nositschka, W.A., Voigt, O., Manshanden, P. and Kurz, H., 2003. Texturisation of multicrystalline silicon solar cells by RIE and plasma etching. Solar energy materials and solar cells, 80(2), pp.227-237. [26]

  • Uses O2 and SF6 - both present here.
  • PECVD Si3N4 - we can sputter this instead, not as conformal as PECVD but might work

4. MACE

Fang, H., Li, X., Song, S., Xu, Y. and Zhu, J., 2008. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology, 19(25), p.255703. [27]

  • uses Ag instead of Au
  • formation of pillars, completely non reflective surface

9. Porous Si

Schirone, L., Sotgiu, G. and Califano, F.P., 1997. Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells. Thin Solid Films, 297(1), pp.296-298. [28]

  • HF/HNO3 based etching

10. ZnO nanostructures

Lee, Y.J., Ruby, D.S., Peters, D.W., McKenzie, B.B. and Hsu, J.W., 2008. ZnO nanostructures as efficient antireflection layers in solar cells. Nano letters, 8(5), pp.1501-1505. [29]

  • seeding process in solution


Experimental[edit]

12. Dhankani, K.C. and Pearce, J.M., 2016. Open source laboratory sample rotator mixer and shaker. HardwareX. [30]

  • experimental set up for ARC based on this

17. Zhang, C., Anzalone, N.C., Faria, R.P. and Pearce, J.M., 2013. Open-source 3D-printable optics equipment. PloS one, 8(3), p.e59840. [31]

  • chopper for monochromator to be used for transmission measurements using the Gimbal system

29. Gombert, A., Rose, K., Heinzel, A., Horbelt, W., Zanke, C., Bläsi, B. and Wittwer, V., 1998. Antireflective submicrometer surface-relief gratings for solar applications. Solar Energy Materials and Solar Cells, 54(1), pp.333-342. [32]

  • The optical properties of surface-relief gratings, structured on a submicrometer scale, were investigated by effective-medium approaches and by rigorous diffraction theory. Linear and crossed surface-relief gratings in photoresist were prepared on relatively large areas with a holographic process. From the photoresist gratings, nickel masters were produced and then used for an embossing process. With this process, the surface-relief gratings were transferred into an ORMOCER film on a glass pane. The angle-dependent transmittance and the reflectance of glass panes coated with structured ORMOCER films were measured. Transmittance values of more than 98% can be achieved.

32. Gombert, A., Glaubitt, W., Rose, K., Dreibholz, J., Bläsi, B., Heinzel, A., Sporn, D., Döll, W. and Wittwer, V., 1999. Subwavelength-structured antireflective surfaces on glass. Thin Solid Films, 351(1), pp.73-78. [33]

  • solgel
  • surface relief structures

33. Cathro, K., Constable, D. and Solaga, T., 1984. Silica low-reflection coatings for collector covers, by a dip-coating process. Solar Energy, 32(5), pp.573-579. [34]

34. Prado, R., Beobide, G., Marcaide, A., Goikoetxea, J. and Aranzabe, A., 2010. Development of multifunctional sol–gel coatings: anti-reflection coatings with enhanced self-cleaning capacity. Solar Energy Materials and Solar Cells, 94(6), pp.1081-1088. [35]

  • coatings consisting of two-layer stacks with a mesoporous SiO2 AR layer and a dense/mesoporous TiO2 layer

36. Nostell, P., Roos, A. and Karlsson, B., 1999. Optical and mechanical properties of sol-gel antireflective films for solar energy applications. Thin solid films, 351(1), pp.170-175.

[36]

37. Raut, H.K., Nair, A.S., Dinachali, S.S., Ganesh, V.A., Walsh, T.M. and Ramakrishna, S., 2013. Porous SiO 2 anti-reflective coatings on large-area substrates by electrospinning and their application to solar modules. Solar Energy Materials and Solar Cells, 111, pp.9-15. [37]

38. Kluth, O., Rech, B., Houben, L., Wieder, S., Schöpe, G., Beneking, C., Wagner, H., Löffl, A. and Schock, H.W., 1999. Texture etched ZnO: Al coated glass substrates for silicon based thin film solar cells. Thin solid films, 351(1), pp.247-253. [38]

45. Inal, O.T. and Scherer, A., 1986. Optimization and microstructural analysis of electrochemically deposited selective solar absorber coatings. Journal of materials science, 21(3), pp.729-736. [39]


Results and discussions[edit]

27. Rubin, M., 1985. Optical properties of soda lime silica glasses. Solar energy materials, 12(4), pp.275-288. [40]

  • useful background for experiments
  • effect of substrate on measured values

28. Bagley, B.G., Vogel, E.M., French, W.G., Pasteur, G.A., Gan, J.N. and Tauc, J., 1976. The optical properties of a soda-lime-silica glass in the region from 0.006 to 22 eV. Journal of Non-Crystalline Solids, 22(2), pp.423-436. [41]

  • useful background for experiments
  • effect of substrate on measured values

30. Springer, J., Rech, B., Reetz, W., Müller, J. and Vanecek, M., 2005. Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates. Solar Energy Materials and Solar Cells, 85(1), pp.1-11. [42]

  • ZnO layers of different thickness and applied wet chemical etching in diluted HCl.
  • Adjust ZnO texture and thickness almost independently.

31. Hutchins, M.G., Topping, A.J., Anderson, C., Olive, F., Van Nijnatten, P., Polato, P., Roos, A. and Rubin, M., 2001. Measurement and prediction of angle-dependent optical properties of coated glass products: results of an inter-laboratory comparison of spectral transmittance and reflectance. Thin Solid Films, 392(2), pp.269-275. [43]

35. Karlsson, J. and Roos, A., 2000. Modelling the angular behaviour of the total solar energy transmittance of windows. Solar energy, 69(4), pp.321-329.

  • angular dependance of transmission
  • will be useful when characterizing Gimbal system

40. Ballif, C., Dicker, J., Borchert, D. and Hofmann, T., 2004. Solar glass with industrial porous SiO 2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain. Solar energy materials and solar cells, 82(3), pp.331-344. [44]

41. Cathro, K.J., Constable, D.C. and Solaga, T., 1981. Durability of porous silica antireflection coatings for solar collector cover plates. Solar energy, 27(6), pp.491-496. [45]

46. Patel, S.N., Inal, O.T., Singh, A.J. and Scherer, A., 1985. Optimization and thermal degradation study of black nickel solar collector coatings. Solar energy materials, 11(5), pp.381-399. [46]

48. Hutchins, M.G., 1983. Selective thin film coatings for the conversion of solar radiation. Surface technology, 20(4), pp.301-320. [47]

papers to read in detail[edit]

42. Jurisson, J., Peterson, R.E. and Mar, H.Y.B., 1975. Principles and applications of selective solar coatings. Journal of Vacuum Science and Technology, 12(5), pp.1010-1015. [48]

43. Selvakumar, N. and Barshilia, H.C., 2012. Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Solar Energy Materials and Solar Cells, 98, pp.1-23. [49]

47. Niklasson, G.A. and Granqvist, C.G., 1983. Surfaces for selective absorption of solar energy: an annotated bibliography 1955–1981. Journal of Materials science, 18(12), pp.3475-3534. [50]

  • complete bibliography with >500 papers

References[edit]

  1. Raut, H.K., Ganesh, V.A., Nair, A.S. and Ramakrishna, S., 2011. Anti-reflective coatings: A critical, in-depth review. Energy & Environmental Science, 4(10), pp.3779-3804.
  2. Sahoo, K.C., Lin, M.K., Chang, E.Y., Lu, Y.Y., Chen, C.C., Huang, J.H. and Chang, C.W., 2009. Fabrication of antireflective sub-wavelength structures on silicon nitride using nano cluster mask for solar cell application. Nanoscale research letters, 4(7), p.680.
  3. Strehlke, S., Bastide, S., Guillet, J. and Levy-Clement, C., 2000. Design of porous silicon antireflection coatings for silicon solar cells. Materials Science and Engineering: B, 69, pp.81-86.
  4. Tsakalakos, L., Balch, J., Fronheiser, J., Shih, M.Y., LeBoeuf, S.F., Pietrzykowski, M., Codella, P.J., Korevaar, B.A., Sulima, O., Rand, J. and Davuluru, A., 2007. Strong broadband optical absorption in silicon nanowire films. J. Nanophotonics, 1(1), p.013552.
  5. Stelzner, T., Pietsch, M., Andrä, G., Falk, F., Ose, E. and Christiansen, S., 2008. Silicon nanowire-based solar cells. Nanotechnology, 19(29), p.295203.
  6. Lalanne, P. and Morris, G.M., 1997. Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology, 8(2), p.53.
  7. Woelfle, M., Olliaro, P. and Todd, M.H., 2011. Open science is a research accelerator. Nature Chemistry, 3(10), p.745.
  8. Baden, T., Chagas, A.M., Gage, G., Marzullo, T., Prieto-Godino, L.L. and Euler, T., 2015. Open Labware: 3-D printing your own lab equipment. PLoS Biol, 13(3), p.e1002086.
  9. Pearce, J.M., 2012. Building research equipment with free, open-source hardware. Science, 337(6100), pp.1303-1304.
  10. Daniel K, F., 2012. Open-source hardware is a low-cost alternative for scientific instrumentation and research. Modern Instrumentation, 2012.
  11. Pearce, J.M., 2013. Open-source lab: How to build your own hardware and reduce research costs. Newnes.
  12. Woelfle, M., Olliaro, P. and Todd, M.H., 2011. Open science is a research accelerator. Nature Chemistry, 3(10), p.745.
  13. Rundle, G., 2014. A Revolution in the Making. Simon and Schuster.
  14. Pearce, J.M., 2014. Laboratory equipment: Cut costs with open-source hardware. Nature, 505(7485), pp.618-618.
  15. Pearce, J.M., 2015. Quantifying the value of open source hard-ware development. Modern Economy, 6(01), p.1.
  16. Zwicker, A.P., Bloom, J., Albertson, R. and Gershman, S., 2015. The suitability of 3D printed plastic parts for laboratory use. American Journal of Physics, 83(3), pp.281-285.
  17. Han, K.S., Shin, J.H. and Lee, H., 2010. Enhanced transmittance of glass plates for solar cells using nano-imprint lithography. Solar Energy Materials and Solar Cells, 94(3), pp.583-587.
  18. Gombert, A., Glaubitt, W., Rose, K., Dreibholz, J., Bläsi, B., Heinzel, A., Sporn, D., Döll, W. and Wittwer, V., 2000. Antireflective transparent covers for solar devices. Solar Energy, 68(4), pp.357-360.
  19. Wang, X. and Shen, J., 2010. Sol–gel derived durable antireflective coating for solar glass. Journal of sol-gel science and technology, 53(2), pp.322-327.
  20. Helsch, G. and Deubener, J., 2012. Compatibility of antireflective coatings on glass for solar applications with photocatalytic properties. Solar Energy, 86(3), pp.831-836.
  21. Verma, L.K., Sakhuja, M., Son, J., Danner, A.J., Yang, H., Zeng, H.C. and Bhatia, C.S., 2011. Self-cleaning and antireflective packaging glass for solar modules. Renewable Energy, 36(9), pp.2489-2493.
  22. Lampert, C.M., 1987. Advanced optical materials for energy efficiency and solar conversion. Solar & wind technology, 4(3), pp.347-379.
  23. Ackley, D.E. and Tauc, J., 1977. Silicon films as selective absorbers for solar energy conversion. Applied optics, 16(11), pp.2806-2809.
  24. Li, Y., Zhang, J. and Yang, B., 2010. Antireflective surfaces based on biomimetic nanopillared arrays. Nano Today, 5(2), pp.117-127.
  25. Xu, H., Lu, N., Qi, D., Hao, J., Gao, L., Zhang, B. and Chi, L., 2008. Biomimetic antireflective Si nanopillar arrays. Small, 4(11), pp.1972-1975.
  26. Nositschka, W.A., Voigt, O., Manshanden, P. and Kurz, H., 2003. Texturisation of multicrystalline silicon solar cells by RIE and plasma etching. Solar energy materials and solar cells, 80(2), pp.227-237.
  27. Fang, H., Li, X., Song, S., Xu, Y. and Zhu, J., 2008. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology, 19(25), p.255703.
  28. Schirone, L., Sotgiu, G. and Califano, F.P., 1997. Chemically etched porous silicon as an anti-reflection coating for high efficiency solar cells. Thin Solid Films, 297(1), pp.296-298.
  29. Lee, Y.J., Ruby, D.S., Peters, D.W., McKenzie, B.B. and Hsu, J.W., 2008. ZnO nanostructures as efficient antireflection layers in solar cells. Nano letters, 8(5), pp.1501-1505.
  30. Dhankani, K.C. and Pearce, J.M., 2016. Open source laboratory sample rotator mixer and shaker. HardwareX.
  31. Zhang, C., Anzalone, N.C., Faria, R.P. and Pearce, J.M., 2013. Open-source 3D-printable optics equipment. PloS one, 8(3), p.e59840.
  32. Gombert, A., Rose, K., Heinzel, A., Horbelt, W., Zanke, C., Bläsi, B. and Wittwer, V., 1998. Antireflective submicrometer surface-relief gratings for solar applications. Solar Energy Materials and Solar Cells, 54(1), pp.333-342.
  33. Gombert, A., Glaubitt, W., Rose, K., Dreibholz, J., Bläsi, B., Heinzel, A., Sporn, D., Döll, W. and Wittwer, V., 1999. Subwavelength-structured antireflective surfaces on glass. Thin Solid Films, 351(1), pp.73-78.
  34. Cathro, K., Constable, D. and Solaga, T., 1984. Silica low-reflection coatings for collector covers, by a dip-coating process. Solar Energy, 32(5), pp.573-579.
  35. Prado, R., Beobide, G., Marcaide, A., Goikoetxea, J. and Aranzabe, A., 2010. Development of multifunctional sol–gel coatings: anti-reflection coatings with enhanced self-cleaning capacity. Solar Energy Materials and Solar Cells, 94(6), pp.1081-1088.
  36. Nostell, P., Roos, A. and Karlsson, B., 1999. Optical and mechanical properties of sol-gel antireflective films for solar energy applications. Thin solid films, 351(1), pp.170-175.
  37. Raut, H.K., Nair, A.S., Dinachali, S.S., Ganesh, V.A., Walsh, T.M. and Ramakrishna, S., 2013. Porous SiO 2 anti-reflective coatings on large-area substrates by electrospinning and their application to solar modules. Solar Energy Materials and Solar Cells, 111, pp.9-15.
  38. Kluth, O., Rech, B., Houben, L., Wieder, S., Schöpe, G., Beneking, C., Wagner, H., Löffl, A. and Schock, H.W., 1999. Texture etched ZnO: Al coated glass substrates for silicon based thin film solar cells. Thin solid films, 351(1), pp.247-253.
  39. Inal, O.T. and Scherer, A., 1986. Optimization and microstructural analysis of electrochemically deposited selective solar absorber coatings. Journal of materials science, 21(3), pp.729-736.
  40. Rubin, M., 1985. Optical properties of soda lime silica glasses. Solar energy materials, 12(4), pp.275-288.
  41. Bagley, B.G., Vogel, E.M., French, W.G., Pasteur, G.A., Gan, J.N. and Tauc, J., 1976. The optical properties of a soda-lime-silica glass in the region from 0.006 to 22 eV. Journal of Non-Crystalline Solids, 22(2), pp.423-436.
  42. Springer, J., Rech, B., Reetz, W., Müller, J. and Vanecek, M., 2005. Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates. Solar Energy Materials and Solar Cells, 85(1), pp.1-11.
  43. Hutchins, M.G., Topping, A.J., Anderson, C., Olive, F., Van Nijnatten, P., Polato, P., Roos, A. and Rubin, M., 2001. Measurement and prediction of angle-dependent optical properties of coated glass products: results of an inter-laboratory comparison of spectral transmittance and reflectance. Thin Solid Films, 392(2), pp.269-275.
  44. Ballif, C., Dicker, J., Borchert, D. and Hofmann, T., 2004. Solar glass with industrial porous SiO 2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain. Solar energy materials and solar cells, 82(3), pp.331-344.
  45. Cathro, K.J., Constable, D.C. and Solaga, T., 1981. Durability of porous silica antireflection coatings for solar collector cover plates. Solar energy, 27(6), pp.491-496.
  46. Patel, S.N., Inal, O.T., Singh, A.J. and Scherer, A., 1985. Optimization and thermal degradation study of black nickel solar collector coatings. Solar energy materials, 11(5), pp.381-399.
  47. Hutchins, M.G., 1983. Selective thin film coatings for the conversion of solar radiation. Surface technology, 20(4), pp.301-320.
  48. Jurisson, J., Peterson, R.E. and Mar, H.Y.B., 1975. Principles and applications of selective solar coatings. Journal of Vacuum Science and Technology, 12(5), pp.1010-1015.
  49. Selvakumar, N. and Barshilia, H.C., 2012. Review of physical vapor deposited (PVD) spectrally selective coatings for mid-and high-temperature solar thermal applications. Solar Energy Materials and Solar Cells, 98, pp.1-23.
  50. Niklasson, G.A. and Granqvist, C.G., 1983. Surfaces for selective absorption of solar energy: an annotated bibliography 1955–1981. Journal of Materials science, 18(12), pp.3475-3534.