嵌入式能源,也称为体现能源,被定义为在制造产品的工作中使用的能源。体现能量是试图衡量整个产品生命周期所需的所有能量的总和此生命周期包括原材料提取、运输、[1]制造、组装、安装、拆卸、解构和/或分解。

不同的方法对应用的规模和范围以及体现的能源类型产生不同的理解。一些方法论有兴趣解释支持经济过程的石油所蕴含的能源。

标准

英国可持续住宅规范和美国 LEED能源与环境设计领先标准是对产品或材料的隐含能量以及其他因素进行评级的标准,以评估建筑物的环境影响体现能量是一个新概念,科学家尚未就其绝对普遍价值达成一致,因为需要考虑许多变量,但大多数人同意可以将产品相互比较,看看哪个具有更多的体现能量,哪个具有更少的体现能量。比较列表(例如,参见下面的巴斯大学具体能源和碳材料清单)包含平均绝对值,并解释了在编制列表时考虑的因素。

使用的典型隐含能量单位是 MJ/kg(制造一公斤产品所需的兆焦耳能量)、tCO 2 (制造一公斤产品所需的能量产生的二氧化碳吨数)。将 MJ 转换为 tCO 2并不简单,因为不同类型的能源(石油、风能、太阳能、核能等)排放的二氧化碳量不同,因此制造产品时实际排放的二氧化碳量将取决于制造过程中使用的能源类型。例如,澳大利亚政府[2]给出的全球平均值为 0.098 tCO 2 = 1 GJ。这与 1 MJ = 0.098 kgCO 2 = 98 gCO 2相同或 1 kgCO 2 = 10.204 MJ。

相关方法论

在 2000 年代,澳大利亚的干旱状况引起了人们对将具体能量分析方法应用于水的兴趣。这导致使用了具体水的概念。

术语

David M. Scienceman创造了能值这个词作为具体能量的一般同义词。[3]


例子

每单位质量建筑产品的隐含能量:澳大利亚的典型数字
具身能量兆焦耳/公斤
风干锯硬木0.5
稳定的地球0.7
混凝土砌块1.5

嵌入式碳与能源

这是迄今为止关于材料中嵌入的能量和碳的最完整文件之一的链接,即(体现的)碳和能源 (ICE) 清单

也可以看看

参考

  1. Advances in free geographic mapping services can help reduce embodied energy of transportation in two ways. First. to choose a route that uses the least fuel and maintains vehicle velocities at their individual maximum fuel efficiency. Secondly, overlays can be used of determining: (i) raw material and products availability as a function of location, and (ii) modes of transportation as a function of emissions. These overlays enable manufacturers access to an easily navigable method to optimize the life cycle of their products by minimizing embodied energy of transportation. Pearce, J.M., Johnson, S.J., & Grant, G.B., 2007. "3D-Mapping Optimization of Embodied Energy of Transportation", Resources, Conservation and Recycling, 51 pp. 435–453. [1]
  2. http://web.archive.org/web/20081018053322/http://www.cmit.csiro.au:80/brochures/tech/embodied/ CSIRO on embodied energy: Australia's foremost scientific institution
  3. Odum 1996, Environmental Accounting: Energy and Environmental Decision Making, Wiley


Bibliography

  • D.H. Clark, G.J. Treloar and R. Blair (2003) 'Estimating the increasing cost of commercial buildings in Australia due to greenhouse emissions trading, in J. Yang, P.S. Brandon and A.C. Sidwell, Proceedings of The CIB 2003 International Conference on Smart and Sustainable Built Environment, Brisbane, Australia.
  • R. Costanza (1979) "Embodied Energy Basis for Economic-Ecologic Systems." PhD Dissertation. Gainesville, FL: Univ. of FL. 254 pp. (CFW-79-02)
  • R.H. Crawford (2005) "Validation of the Use of Input-Output Data for Embodied Energy Analysis of the Australian Construction Industry", Journal of Construction Research, Vol. 6, No. 1, pp. 71-90.
  • B. Hannon (1973) "The Structure of ecosystems", Journal of Theoretical Biology, 41, pp. 535-546.
  • M. Lenzen (2001) "Errors in conventional and input-output-based life-cycle inventories", "Journal of Industrial Ecology", 4(4), pp. 127-148.
  • M. Lenzen and G.J.Treloar (2002) 'Embodied energy in buildings: wood versus concrete-reply to Börjesson and Gustavsson, Energy Policy, Vol 30, pp. 249-244.
  • W. Leontief (1966) Input-Output Economics, Oxford University Press, New York.
  • J. Martinez-Alier (1990) Ecological Economics: Energy Environment and Society, Basil Blackwell Ltd, Oxford.
  • P. Mirowski (1999) More Heat than Light: Economics as Social Physics, Physics as Nature's Economics, Historical Perspectives on Modern Economics, Cambridge University Press, Cambridge.
  • H.T. Odum (1994) Ecological and General Systems: An Introduction to Systems Ecology, Colorado University Press, Boulder Colorado.
  • D.M. Scienceman (1987) Energy and Emergy. In G. Pillet and T. Murota (eds), Environmental Economics: The Analysis of a Major Interface. Geneva: R. Leimgruber. pp. 257-276. (CFW-86-26)
  • S.E. Tennenbaum (1988) Network Energy Expenditures for Subsystem Production, MS Thesis. Gainesville, FL: University of FL, 131 pp. (CFW-88-08)
  • G.J. Treloar (1997) Extracting Embodied Energy Paths from Input-Output Tables: Towards an Input-Output-based Hybrid Energy Analysis Method, Economic Systems Research, Vol. 9, No. 4, pp. 375- 391.
  • G.J. Treloar (1998) A comprehensive embodied energy analysis framework, Ph.D. thesis, Deakin University, Australia.
  • G.J. Treloar, C. Owen and R. Fay (2001) 'Environmental assessment of rammed earth construction systems', Structural survey, Vol. 19, No. 2, pp. 99-105.
  • G.J.Treloar, P.E.D.Love, G.D.Holt (2001) Using national input-output data for embodied energy analysis of individual residential buildings, Construction Management and Economics, Vol. 19, pp. 49-61.
  • D.R.Weiner (2000) Models of Nature: Ecology, Conservation and Cultural Revolution in Soviet Russia, University of Pittsburgh Press, United States of America.
  • G.P.Hammond and C.I.Jones (2006) Inventory of (Embodied) Carbon & Energy (ICE), Department of Mechanical Engineering, University of Bath, United Kingdom


External links

Cookies help us deliver our services. By using our services, you agree to our use of cookies.