Direct Ink Writing of Li1.3Al0.3Ti1.7(PO4)3-Based Solid-State Electrolytes with Customized Shapes and Remarkable Electrochemical Behaviorseditedit source[edit | edit source]

Liu, Z., Tian, X., Liu, M., Duan, S., Ren, Y., Ma, H., Tang, K., Shi, J., Hou, S., Jin, H., & Cao, G., "Direct Ink Writing of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 ‐Based Solid‐State Electrolytes with Customized Shapes and Remarkable Electrochemical Behaviors" . Small, 17(6), 2002866. 2021

  • All-solid-state batteries
  • Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 -based ink electrolyte:
  • high conductivity and electrochemical stability
  • less sensitive to oxygene---> prepare in air---> low-cost
  • electrochemically stable

MATERIALS:

  • Ceramic solid state electrolyte (CSSE):
    • SOLVENT: (DI) water (wetting) and isopropanol (IPA) (dispersing) (4:1) + LATP---> 950 degree sintering (secondary phase weaker), proper grain size (higher degrees are bigger)---> LiFePO4 cathode, Li anode---> high discharge capacity of 150 mAh g−1 at 0.5 C
  • Hybrid solid state electrolyte (HSSE):
    • SOLVENT: acetonitrile +poly(ethylene oxide) (PEO) and lithium bis(trifluoromethane)sulfonimide (LiTFSI) +
    • LiFePO4 cathode, Li anode
    • 300 degree decomposition temperature
    • high discharge capacity of 150 mAh g−1 at 0.5 C

TESTS:

  • SEM, TGA, XRD, rheometer

Parameters:

  • Layers: 3
  • Viscosity: 104-105
  • resolution: N/K
  • Nozzle size: 330 micrometer
Material Deionized water (Solvent 1) isopropanol (IPA)

(Solvent 1)

acetonitrile

(Solvent 2)

PEO

(in Solvent 2)

Lithium carbonate Aluminum oxide titanium dioxide ammonium dihydrogen phosphate LiTFSI LATP
Equipment Freeze dryer oven (for 650, 700, 1050 degrees) ball-mill Glovebox
Characterization SEM XRD Rheometer TGA

Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Deviceseditedit source[edit | edit source]

Zhang, Y., Shi, G., Qin, J., Lowe, S. E., Zhang, S., Zhao, H., & Zhong, Y. L, "Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Devices". ACS Applied Electronic Materials, 1(9), 1718–1734, 2019

  • Printable inks: fillers, binders, additives and solvents
  • microelectrodes, strain sensors, soft robotics and biomedical devices, stretchable wires, stretchable circuits, supercapacitors, piezoelectric nanogenerators
Filler Ag Carbon black/CNF/GO Cu Eutectic GalliumIndium alloy LMFP LTO-LFP Al2O3 Acrylonitrile butadiene styrene/acrylate oligomer Acrylate oligomer PDMS elastomer
Binder Thermoplastic polyurethane (Elastollan Soft 35A) Silicone rubber (Dragon skin 10) Polyvinylidene fluoride (PVDF) PVDF-HFP Aqueous

hydroxyethyl cellulose

Additive Slo-Jo Cure Retarder (0.5 wt%) Hydroxypropyl cellulose Nanoclay (Cloisite Na+) Sodium chloride microparticles Glycerol ethylene glycol (EG) Photoinitiator/ reactive diluents Photoinitiator/ reactive diluents
Solvent DMF THF DCM DI water NMP Glycerol Acroleic acid

Direct ink writing preparation of LiFePO4/MWCNTs electrodes with high-areal Li-ion capacity[edit | edit source]

Li, L., Tan, H., Yuan, X., Ma, H., Ma, Z., Zhao, Y., Zhao, J., Wang, X., Chen, D., & Dong, Y. (2021). Direct ink writing preparation of LiFePO4/MWCNTs electrodes with high-areal Li-ion capacity. Ceramics International, 47(15), 21161–21166. https://doi.org/10.1016/j.ceramint.2021.04.119

Preparing:

  • LiFePO4+ MWCNTs+ PVDF (70:20:10)---> grind---> +NMP--->centrifuge for 20 min at 3500 rpm
  • ink in 3mL syringe with 330 micrometer nozzle, extrusion power 2.5 and 5 MPa, printing speed 400 μm s−1, height till surface 0.15- 0.25 mm----> 3D printing---> in DI water for 30 min (get rid of NMP)---> freeze-drying

Parameters:

  • Viscosity: N/K
  • resolution: N/K
  • Nozzle size: 330 micrometer
  • extrusion power: 2.5 and 5 MPa
  • printing speed: 400 μm s−1
  • height till surface 0.15- 0.25 mm
Materials LiFePO4 MWCNTs PVDF NMP deionized water
Equipment mortar and pestel centrifuge DIrect ink writer dry freezing
Characteriazation SEM TEM XRD specific surface and porosity analyzer TGA Electrochemistry

Direct Ink Writing of Moldable Electrochemical Energy Storage Devices: Ongoing Progress, Challenges, and Prospectseditedit source[edit | edit source]

Zhang, Q., Zhou, J., Chen, Z., Xu, C., Tang, W., Yang, G., Lai, C., Xu, Q., Yang, J., & Peng, C. "Direct Ink Writing of Moldable Electrochemical Energy Storage Devices: Ongoing Progress, Challenges, and Prospects". Advanced Engineering Materials, 23(7), 2100068, 2021

  • Resolution: 60-500 μm
  • Viscosity: 103-104 Pa.s
  • rate: 20–150 mm s1

Reprocessable 3D-Printed Conductive Elastomeric Composite Foams for Strain and Gas Sensingeditedit source[edit | edit source]

Wei, P., Leng, H., Chen, Q., Advincula, R. C., & Pentzer, E. B. "Reprocessable 3D-Printed Conductive Elastomeric Composite Foams for Strain and Gas Sensing". ACS Applied Polymer Materials, 1(4), 885–892, 2019

  • Foams for Strain and Gas Sensing
  • Using Direct ink writing (DIW)

Preparing:

  • TPU in DMF ---> capped & stirred on magnetic hot plate at 80 °C for 24 hours---> cooled to room---> plastic cup---> + CB & nanoclay--->homogenized for 6 min

3D printing:

  • ink on glass 0.22 mm height---> then into deionized water for 30 min (remove DMF)---> in HF (3 w%) at room temp for 24 hours---> deionized water ---> freeze dried

Parameters:

  • Viscosity: 104 Pa.S
  • resolution:
  • Nozzle size: 400 micrometer
  • extrusion power: N/K
  • printing speed: 20 mL/h
  • height till surface 0.22 mm
Matrials TPU Nanoclay DMF Carbon black
Equipment magnetic hot plate Centrifugal mixer
Characterization Rheometer strain-stress Piezoresistance freeze dryer SEM Optical images

Direct ink writing of flexible electronic circuits and their characterization[edit | edit source]

Abas, M., Salman, Q., Khan, A. M., & Rahman, K. (2019). Direct ink writing of flexible electronic circuits and their characterization. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(12), 563. https://doi.org/10.1007/s40430-019-2066-3

  • this paper focuses on fabrication of electronic circuits from carbon paste on flexible PET with direct ink writing.

Preparing:

  • 8 g of polyvinyl alcohol (PVA)+ 40 ml of deionized---> mechanical shaker for 1 h in 90 degrees---> magnetic stirring for 2 h----> + 40 g carbon paste for 4 h---> sinter in 135 degrees in dry oven

Parameters:

  • Viscosity: 25,000 cps
  • resolution:
  • Nozzle size: 200 micrometer
  • extrusion power:
  • printing speed:
  • height till surface:
  • extrusion pressure: pneumatic pressure
Materials carbon PVA DI
Equipment mechanical shaker magnetic stirrer dry oven
Characterization rheometer RMS SEM

Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architectureeditedit source[edit | edit source]

Wang, Z., Guan, X., Huang, H., Wang, H., Lin, W., & Peng, Z. "Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture". Advanced Functional Materials, 29(11), 1807569, 2019

  • Stretchable Piezoresistive Sensor by direct ink writing (DIW)
  • materials:
  • substrate: mixing The base and curing agent of PDMS, degassed
  • electrode: dissolving TPU in N,Ndimethylformamide (DMF) solvent in 1:1.5 weight ratio + silver microflakes (mix 30 min)
  • sensing layer ink: NaCl particles (ball milling)---> + CB+TPU
  • 3D printing:
  • substrate with a thickness of about 200 µm--->cured at 80 °C for 2 h---> oxygen plas,a for 2 min
  • electrode & sensing layer: high-viscosity ink---> print---> dried at 110 degree---> immersed in water for NaCl removal

Clog-Free, Low-Cost, and Uniform Electrode Inks for 3D Printed Lithium-Ion Batteries[edit | edit source]

Ao, S., Guo, Z., Song, Y., Fang, D., & Bao, Y. (2022). Clog-Free, Low-Cost, and Uniform Electrode Inks for 3D Printed Lithium-Ion Batteries. ACS Applied Energy Materials. https://doi.org/10.1021/acsaem.2c00594

  • DIW is popular for storage devices for simplicity, material compatibility, and shapeability but appropriate rheology and clog-free property are challenges in this method. This paper use multiple ball milling for ink preparation.
  • The results show that the non-Newtonian ink viscosity decrease with increasing shear rate and show shear-thinning behavior.
  • Multiple ball milling makes smaller active materials that has positive effect on rheological behavior.
  • lower than yield point: storage mudulus higher than loss modulus.
  • higher than yield point: loss modulus higher than storage mudulus.
    • Multiple ball milling: makes shear yield higher---> greater stability
  • Battery packaging is IMPORTANT

Preparing:

  • 1) 100 mg PVDF+ 2mL NMP---> 15 min ball milling at 400 rpm---> + 1.2 g LFP---> 6 h ball milling at 400 rpm----> +3 mg MWCNTs+ 1 mL NMP---> ball-milled at 450 rpm for another 6 h
  • 2) 400 mg PVDF + 1.4 mL NMP---> rotation orbital mixer
  • 1 + 2---> rotation mixer for 20 min at 1650 rpm ---> centrifuge for removing bubbles at 2000 rpm for 1 min
  • 3d printing---> after printing, dry at 40 degrees for 30 min---> vacuum oven at 70 degrees for 12 h

Parameters:

  • syringe
  • air-powered fluid dispenser
  • nozzle size: 250 μm
  • printing speed: 4 mm s−1
  • extrusion power: 450 kPa
Materials PVDF NMP LFP MWCNTs
Equipment ball mill rotation orbital mixer centrifufuge rheometer vacuum drier
Characterization SEM 3D digital microscope electronic testing machine Electrochemical Performance

3D-Printed MOF-Derived Hierarchically Porous Frameworks for Practical High-Energy Density Li–O2 Batterieseditedit source[edit | edit source]

Lyu, Z., Lim, G. J. H., Guo, R., Kou, Z., Wang, T., Guan, C., Ding, J., Chen, W., & Wang, J. "3D-Printed MOF-Derived Hierarchically Porous Frameworks for Practical High-Energy Density Li–O2 Batteries". Advanced Functional Materials, 29(1), 1806658, 2019

  • Direct ink writing (DIW)

Preparing:

  • Co-MOF: 2-methylimidazole solution (C4H6N2, 40 mL, 0.4 m)+cobalt nitrate solution (Co(NO3)2·6H2O, 40 mL, 0.025 m)---> 4 h---> washed with deionized water, and dried
  • CP-Co-MOF: carbon paper (CP) collector + solution (?)--->4h--->washed with deionized water, and dried
  • 3DP-Co-MOF: Co-MOF + deionized water---> +Pluronic F127 powder (25 wt%) (m = 100, n = 65, molecular weight = 12 500 – 12 600)---> stirred at 4 degrees--->Co-MOF-F127---> refrigerator below 4 degrees for 24-36 h---> 3d print---> dry in room temperarure for 24 h

Parameters:

  • syringe: 20 mL
  • Nozzle: 200- 400 µm
  • three-axis extruder
  • printing speed: 18 mm s−1
  • layers: 2-4-6

Tests:

  • XRD, TEM, Raman, XPS, N2 adsorption/desorption isotherms
  • specific surface area: Brunauer–Emmett–Teller
  • pore volume: Barrett–Joyner–Halenda
  • macropore size: Quantachrome 3GWin2 porosimetry
  • resistance (R): Fluke 2638A Hydra Series III Digital Multimeter
  • electric conductivity (σ): σ = L/(R × A)
  • Ink rheology: Discovery Hybrid Rheometer
  • apparent viscosity : as a function of shear rate using logarithmically ascending series
  • elastic storage and viscous loss: oscillatory mode as a function of controlled shear stress (102 – 106 Pa) at a frequency of 6.28319 rad s−1
  • Coin cells (2032): Li metal foil (counter electrode), glass fiber (seperator), LiClO4-DMSO (electrolyte)
Materials C4H6N2 Co(NO3)2·6H2O deionized water carbon paper (CP) Pluronic F127
Equipment centrifuge deionized water magnetic stirring refrigerator
Characterization XRD TEM Raman XPS specific surface area pore volume macropore size resistance (R) electric conductivity (σ) Rheometer Coin cells

3D Printing of Customized Li-Ion Batteries with Thick Electrodeseditedit source[edit | edit source]

Wei, T., Ahn, B. Y., Grotto, J., & Lewis, J. A. "3D Printing of Customized Li‐Ion Batteries with Thick Electrodes". Advanced Materials, 30(16), 1703027, 2018

  • Direct ink writing (DIW)

Electrodes:

  • PC (50 g), PVP (0.1 g), and LFP or LTO powder (10 g) in ball mill (250 mL HDPE bottles, 5 mm (250 g) and 0.5 mm (150 g) yttrium stabilized zirconia milling beads)---> 24 h ---> filtered through 20 µm stainless steel sieves---> centrifuge for 30 min---> homogenized by planetary mixer---> + PC + LiTFSI---> + KB---------> final: 30 vol% LFP with 1.25 vol% KB and 30 vol% LTO with 1.35 vol% KB in 1 m LiTFSI/PC with 1 wt% PVP% (with respect to LFP or LTO)

Seperator:

  • PC (50 g), TX-100 (1 g), and Al2O3 powder (20 g)---> ball milling, filtering, and centrifuging an Al2O3---> collected and homogenized---> HMMP & 1 m LiTFSI/PC---> planetary mixer--->+ ETPTA--->vortex-mixed for 30 min

Packaging:

  • 4 vol% SiO2 in UV-curing epoxy---> planetary mixer

Test:

  • at 22 degrees with rheometer, Oscillatory measurements (G′, G″), Optical microscopy images, electrochemical experiments (potentioestat, standard galvanostatic), Celgard separator for seperator analisys, Electronic conductivities, Swagelok cell, AC Impedance measurements, Cyclic voltammetry, self-discharge measurement

Fully 3D print:

  • 1) Glassy Carbon, 2) packaging walls + UV, 3) anode into package, 4) seperator on top of anode+ UV, 5) Cathode, 6) Glassy Carbon, 7) packaging+ UV, 8)UV for whole battery package

parameters:

  • 3-axis micropositioning stage
  • syringe: 3mL
  • Nozzle: 100 micrometer
  • pressure: Ar-powered fluid dispenser, 700 psi
  • seperator height: 2.5 mm
  • anode and cathode height: 1mm
Materials PC PVP LFP LTO LiTFSI KB TX-100 Al2O3 powder HMMP ETPTA SiO2 UV-curing epoxy
Equipment ball mill sieves centrifuge planetary mixer

3D printing of lignin: Challenges, opportunities and roads onward source[edit | edit source]

Ebers, L.-S., Arya, A., Bowland, C. C., Glasser, W. G., Chmely, S. C., Naskar, A. K., & Laborie, M.-P. 3D printing of lignin: Challenges, opportunities and roads onward. Biopolymers, 112(6), e23431, 2021

  • Hardwood lignin: linear and less branched, lower softening temperature
  • Thermal degredation in lignin is 150 to 170 degrees

FDM: (up to 40% lignin loaded is investigated)

  • native hardwood lignins of low molecular weight and low Tg
  • ABS + lignin + nitrile rubber or polyoxyethylene---> tough and strong
  • nylon12 + lignin+carbon---> stiffnss, strength, ready to heat
  • lignin + nitrile rubber---> toughness and yield stress & high tensile strength but hard to print due to high molecular weight rubber component and its crosslinking with lignin---> + polystyrene
  • organosolv hardwood lignin + PLA ---> excellent printability with FDM (15 wt %)

DIW: (proper for lignin printing)

  • cellulose nanofibers (CNF), alginate & colloidal lignin+ Ca2+ ions crosslinking
  • Soda lignin + Pluronic F127---> print & freez dried, oven cured
  • hydroxypropyl cellulose (HPC) + organosolv lignin (OSL) in acetic acid---> thermal post processing with citric acid and a dimerized fatty acid

SLA:

  • Kraft lignin+methacrylate resin with solution blending procedure
  • acylation of organosolv lignin using methacrylic anhydride allowed up to (15 wt %) lignin to be incorporated into an open-source SLA resin---> with 10 wt% lignin affording two times the ultimate tensile strength and a 3-fold increase in strain at break
  • lignin is useful as a photoinitiator

Lignin-Based Direct Ink Printed Structural Scaffolds[edit | edit source]

Jiang, B., Yao, Y., Liang, Z., Gao, J., Chen, G., Xia, Q., Mi, R., Jiao, M., Wang, X., & Hu, L. (2020). Lignin‐Based Direct Ink Printed Structural Scaffolds. Small, 16(31), 1907212.

  • Lignin has unfavorable rheological behavior---> hard to be 3d printed---> in this project, a soft triblock copolymer (Pluronic F127) is used as a crosslinking agent.

Materials:

  • Alkali and kraft lignin, H2SO4, Pluronic F127, KOH

Preparing ink:

  • 1) The alkali lignin from hardwood (20 g)+ DI water (250 mL)----> ultrasonication for 1 h ----> centrifuge---> freez dry
  • 2) Pluronic F127 in DI water---> stir at 0 degrees for 12 h
  • mix 1 & 2
  • carbonized at 800 degrees for 2h in Ar---> KOH for 3h at 50 degrees

Characterization:

  • NMR, spectrometer, rheometer, SEM, FT-IR
Material Alkali lignin Kraft lignin H2SO4 Pluronic F127 KOH DI water
Equipment Ultrasonic Centrifuge freeze drier mixer oven (800 degrees)
Characterization NMR Spectrometer Rheometer SEM FT-IR

Lignin-Based Materials for Sustainable Rechargeable Batteries[edit | edit source]

Jung, H. Y., Lee, J. S., Han, H. T., Jung, J., Eom, K., & Lee, J. T. Lignin-Based Materials for Sustainable Rechargeable Batteries. Polymers, 14(4), 673, 2022

  • Binders: Lignin in NMP
    • kraft lignin-based cells + 85 wt% mesocarbon microbeads (MCMB), 10% binder, 5% Super P, and NMP
    • In cathode: LFP, Super P, and lignin (80:11:9)
    • In anode: Si has large volume change---> synthesizing Lignin-grafted sodium polyacrylate (PAL−NaPAA) binder by alkaline hydrolysis of PAL-polyacrylonitrile (PAN)----> (Si, Super P, and PAL-NaPAA (6:1:1))
  • Seperator: PP & PE---> poor thermal stability and ion conductivity----> Lignin: thermal stability, ionic conductivity, and mechanical strength----> fabricated by electrospinning
    • lignin–PVA (1:1)---> electrospinning---> excellent mechanical property, high electrolyte uptake
    • lignin–PAN---> electrospinning---> high porosity, discharge capacity
    • lignin nanoparticle (LNP) coated on a conventional separator in LiS--->
  • Electrolyte: Lignin offers ion conduction paths and suppression of the lithium dendrite formation
    • lignin– polyvinylpyrrolidone (PVP) gel + silanol and PVP to the neutralized alkaline lignin slurry (as electrolyte & seperator)
    • lignin–linear poly(N-vinyl imidazole)-copoly(poly(ethylene glycol) methyl ether methacrylate) copolymer (LCP) gel: film-forming capability, promising electrochemical performance, and good solubility in water
  • Anode: pyrolysis in Lignin---> carbon structure
    • alternative for PAN---> prepared by electrospinning or melt-spinning
    • complementary carbon source= cellulose acetate (CA) + kraft lignin
    • Softwood lignin---> hard to extrude
    • Hardwood---> easy to extrude
    • NIB: lignin sulphonate-derived hard carbon---> wash---> high capacity
    • K-ion battery: Lignin-derived hard carbons
    • tin dioxide (SnO2) + lignin-based porous carbons (LPCs)
    • kraft lignin (E-KL) + cellulose-acetate-derived nanocarbon (CA-C)---> electrospun---> pyrolysis in 1000
    • kraft lignin + cellulose
    • alkali lignin+ KOH --->heat treatment & carbonized
    • coprecipitation of Si/lignin---> anneal---> Si-nanoparticle-loaded carbon particles (high efficiency anode material) + cationic surfactant (CTAB)
    • Nitrogen-doped lignin-based carbon (Lignin + 3-aminophenol (nitrogen source))
  • Cathode: Lignin + Conductive polymers
    • lignin/PEDOT electrode with a 20/80 mass ratio in LIB or NIB
    • NH4F, Al2(SO4)3, KMnO4, sodium lignosulfonate---> nanowires in ZIB
    • Lignin---> pyrolysis--->HIC + Se, Te

Molecular Engineering of Biorefining Lignin Waste for Solid-State Electrolyteeditedit source[edit | edit source]

Li, Q., Cao, D., Naik, M. T., Pu, Y., Sun, X., Luan, P., ... & Zhu, H. Molecular Engineering of Biorefining Lignin Waste for Solid-State Electrolyte. ACS Sustainable Chemistry & Engineering, 2022

Lignocellulosic biomass:

  • cellulose+ hemicellulose+ lignin
  • polysacchrides (cellulose and hemicellulose)---> pretreated & hydrolyzed---> biofuel---> lignin waste
  • lignin: waste of paper industry and biorefineries.
  • solid-state electrolytes (SSEs) (which also work as seperator): solid ceramic/glass electrolyte (SCE), solid polymer electrolyte (SPE), and composite polymer electrolyte (CPE).
  • CPE: ionic conductivity, remarkable flexibility, high processability, and mechanical robustness
  • Poly(ethylene oxide) (PEO):
  • soft polymer, good Li ionic conductivity, limited film formability and poor thermostability, poor mechanical performance and durability

Lignin:

  • aromatic moieties & aryl ether (β−O−4)---> disassociation and conduction of Li ions
  • heterogeneous--->thermostability but poor formability for film processing, poor ionic conductivity
  • Bond PEG and lignin---> PEG-g-lignin polymer: excellent Li ionic conductivity, good thermostability, and good film formability
  • Types of electrolytes: SPE (composed of PEG-g-lignin with the addition of different amount of PVDF-HFP to improve the film formability), CPE (composited by LLGZO ceramics and PEG-g-lignin that have been infiltrated into a polytetrafluoroethylene (PTFE))
  • Lignin & PVDF-HFP---> NOT conductive

Materials:

  • Lignin from LignoBoost process, PTFE film, PEG (MW 200 g/mol), LiTFSI, gallium doped lithium lanthanum zirconium oxide (LLGZO, Li6.4Ga0.2La3Zr2O12), PVDF-HFP

Synthesis of PEG-g-lignin:

  • 60 g of LignoBoost lignin---> dried---> + 300 g of PEG and 0.9 g of 95% H2SO4---> 160 °C using an oil bath for 4-h---> into deionized water ---> centrifugation and lyophilization

SPE:

  • 300 mg of PEG-g-lignin + PVDF-HFP (50 w%, 30 w%, and 15 w %as per PEG-g-lignin)---> mix---> dissolve in N,Ndimethylformamide (DMF)---> 20 w %. Lithium salt (LiTFSI)---> cast---> dried at 80 degrees

CPE:

  • PEG-g-lignin/PVDF-HFP/LiTFSI+ LLGZO powder (1:3)---> mixed---> into PTFE film

TESTS:

  • FT-IR (the structure of PEG-g-lignin), P nuclear magnetic resonance (P NMR) (grafting of PEG onto lignin), 2D HSQC NMR (The change of lignin linkage), Gel permeation chromatography (GPC) (changes in the molecular weight of lignin), Thermogravimetric analysis (TGA) (thermostability), differential scanning calorimetry (DSC), AC impedance
Material Lignin derived from LignoBoost process polytetrafluoroethylene (PTFE) polyethylene glycol (PEG) Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) PVDF-HFP Deionized water N,Ndimethylformamide (DMF)
Equipment Oven Centrifuge Freeze dryer Vacuum pump FlackTek speed Mixer
Characterization NMR GPC FT-IR TGA Ionic conductivity

A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane[edit | edit source]

Liu, B., Huang, Y., Cao, H., Song, A., Lin, Y., Wang, M., & Li, X. (2018). A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane. Journal of Solid State Electrochemistry, 22(3), 807–816.

  • Mechanical and thermal properties of lignin-based gel electrolyte by fabrication and casting a lignin-PVP polymer and immersing it into a liquid electrolyte

Materials:

  • Alkali lignin, hydrochloric acid, PVP, KH-550, LiFePO4, LiPF6, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC)

Lignin-PVP:

  • 2.0 g alkali lignin and 100 mL deionized water ---> stirred 1h room temperature---> +HCL---> + silanol (by mixing and hydrolysis of 0.2 mL γaminopropyltriethoxysilane and 10 mL deionized water)---> 2h at 110 degrees ---> PVP---> stirred---> removing water---> dry at 120 degrees

Gel polymer electrolyte:

  • 0.8 g lignin-PVP in 40mL deionized water---> stirred at 40 degrees for 2 h---> cast ---> remove water at 80 degrees---> punch ---> dry at 80 degrees for 24 h ---> immerse in LiPF6 in EC/DMC/DEC (liquid electrolyte)

Tests:

  • SEM, FT-IR, DSC, TGA, electromechanical universal testing machine, measuring ionic conductivity by EIS, Linear sweep voltammetry (LSV), stress-strain
Material Alkali lignin hydrochloric acid PVP KH-550 LiFePO4 LiPF6 ethylene carbonate (EC) dimethyl carbonate (DMC) diethyl carbonate (DEC)
Equipment mixer oven (till 120 degrees)
Characterization SEM FT-IR DSC TGA electromechanical universal testing machine

Lignin/Si Hybrid Carbon Nanofibers towards Highly Efficient Sustainable Li-ion Anode Materials[edit | edit source]

Culebras, M., Collins, G. A., Beaucamp, A., Geaney, H., & Collins, M. N. Lignin/Si Hybrid Carbon Nanofibers towards Highly Efficient Sustainable Li-ion Anode Materials. Engineered Science, Volume 17(0), 195–203, 2022

  • Fabricating an anode through electrospinning of lignin/PLA/Si---> PLA provides pores in lignin (CNF) and Si particles distribute homogeneously in fibers

Materials:

  • Organosolv hardwood lignin, PLA, DMF, THF, MDI, Si, Super P, LiPF6 in EC-DEC (1:1 v/v), vinylene carbonate (VC, 97%), carboxymethyl cellulose (CMC)

Solution for electrospun:

  • PLA in THF:DMF ---> stir for 1 h at 60 degrees---> +lignin---> mix for 30 min---> +Si---> mix for 10 min---> sonicate for 20 min---> +MDI---> electrospun

CNF powder (carbonization):

  • electrospun---> stabilize: 25 to 150 by 1 degree per min---> keep at 150 for 14 h---> 150 to 200 by 1 degree per min---> keep at 200 for 1 h---> 200 to 250 by 1 degree per min---> keep at 250 for 1 h---> carbonize: tubular furnace---> room to 900 degrees by 10 degrees per min under N2 flow---> 900 for 30 min

Electrode slurry:

  • Carbon black in 1.5 wt% CMC in H2O (binder solution)---> stirred for 6 h---> +CNF---> stirred overnight---> doctor blade at 60 degrees

TESTS:

  • SEM, EDX, FESEM, Raman spectra, XRD, XPS, electrochemical test
Material Organosolv hardwood lignin PLA DMF THF MDI Si Super P LiPF6 in EC-DEC vinylene carbonate (VC) carboxymethyl cellulose (CMC)

(Binder solution)

H2O
Equipment mixer Ultrasolic electrospun oven (250) tubular furnace
Characterization SEM EDX FESEM Raman XRD XPS electrochemisty

Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes[edit | edit source]

Liu, W., Liu, J., Zhu, M., Wang, W., Wang, L., Xie, S., Wang, L., Yang, X., He, X., & Sun, Y. Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Applied Materials & Interfaces, 12(51), 57055–57063, 2020

  • Silicon waste of photovoltaic industry (∼40 wt % (∼1.54 × 105 tons)) & Lignin waste of paper industry (7.0 × 107 tons annually from the pulp industry)
  • Si: high capacity but poor electronic conductivity & huge volume variation of Si and unstable solid electrolyte interphase (SEI)
  • Si in C matrix: low cost, user friendly, prevent Si volume change and enhance conductivity
  • OH groups in lignin are electronegative---> modifying Si particles with cationic surfactant cetyltrimethyl ammonium bromide (CTAB)
  • cationic surfactant cetyltrimethyl ammonium bromide (CTAB)-modified Si particles + electronegative lignin molecule

Material:

  • Solar waste silicon powder---> ball milling for 20 h ---> wash with 10 wt % HF solution and DI water---> 40 mg in 40ml DI water with 90 mg CTAB---> sonicated and stirred for 30 min
  • 400 mg Lignin from soda pulping black liquor---> + 40 ml KOH---> stirred---> + silicon dispersion ---> Si/CTAB+Lignin---> 500 μL of sulfuric acid ( for coprecipitation of Lignin/Si) ---> Si/lignin collected by centrifugation and washed with deionized water (3 times)------()---> dry at 60 degree in vaccum one night---> anneal at 800 degrees for 2 h---> Si/C
  • Si/C---> slurry cast on Cu (80 % Si/C+ 10 % binder (poly(acrylic acid))+ 10 % conductive additive (super P)

TESTS:

  • FESEM (morphology), TEM (microstructure), XRD, FTIR & XPS (chemical composition), TGA
  • electrochemical test:
  • Si/C---> slurry cast on Cu (80 % Si/C+ 10 % binder (poly(acrylic acid))+ 10 % conductive additive (super P)
Material Solar waste silicon powder HF (acid solution for precipitation) DI water CTAB Lignin from soda pulping black liquor KOH (alkaline solution for dissolving) sulfuric acid (H2S04 acid solution for precipitation) poly(acrylic acid) (PAA)

(As binder)

Super P
Equipment ball milling Ultrasonic mixer centrifuge vacuum oven (800 degrees)
Characterization FESEM TEM XRD FTIR XPS TGA electrochemistry

Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries[edit | edit source]

Luo, C., Du, L., Wu, W., Xu, H., Zhang, G., Li, S., Wang, C., Lu, Z., & Deng, Y. (2018). Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 6(10), 12621–12629. https://doi.org/10.1021/acssuschemeng.8b01161

  • This paper uses Lignin as a binder for low cost micro silicon anode.
  • PVDF binder: weak van der Waals interaction
  • NMP binder: not friendly to the environment

Materials:

  • Alkali lignin (AL) (PAL), Acrylonitrile (AN), Anhydrous calcium chloride (CaCl2), hydrogen peroxide (H2O2), dimethyl sulfoxide (DMSO), 2,2′-azoisobutryonitrile (AIBN), micro silicon particles (SiMP), carbon black, DI water

PAL-PAN:

  • 3 mL AN + 3 mg AIBN in 6.3 ml DMSO---> stirred for 3h at 70 degrees in inert ---> obtain active oligomerized AN---> cool to 50 degrees
  • AN in 5.0 mL of DMSO solution containing PAL (1.0 g) and CaCl2 (1.0 g)---> stirred for 15 min inert---> + 0.6 mL of H2O2 (30 wt %)---> stirred at 70 degrees for 6h---> in acidified water at pH = 2---> precipitation---> in DMSO---> in water---> dry at 80 degrees in vacuum---> obtain PAL-PAN
  • PAL-PAN in 80.0 mL of 1 M NaOH---> stirred 5 h at 70 degree---> in HCL to get 7 PH---> DI water and freez drying
  • Electrode: Si mix with super P & PAL-NaPAA binder

TESTS:

  • FT-IR, NMR, SEM, CV, EIS, continuous stiffness measurement (CSM)
Material Alkali lignin (AL) Acrylonitrile (AN) Anhydrous calcium chloride (CaCl2) hydrogen peroxide (H2O2) dimethyl sulfoxide (DMSO) 2,2′-azoisobutryonitrile (AIBN) silicon carbon black DI water
Equipment mixer oven freeze drier vacuum
Characterization FT-IR NMR SEM CV EIS continuous stiffness measurement (CSM)

Ultrahighly Elastic Lignin-Based Copolymers as an Effective Binder for Silicon Anodes of Lithium-Ion Batteries[edit | edit source]

Yuan, J.-M., Ren, W.-F., Wang, K., Su, T.-T., Jiao, G.-J., Shao, C.-Y., Xiao, L.-P., & Sun, R.-C. (2022). Ultrahighly Elastic Lignin-Based Copolymers as an Effective Binder for Silicon Anodes of Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 10(1), 166–176. https://doi.org/10.1021/acssuschemeng.1c05359

  • This papers refers to the fracture of lignin in processing and its incapability to be applied as binder in LIBs. The suggested way is to increase elasticity of binder by copolymerization of lignin (L)−polyacrylic acid (PAA) (1:3) for silicon electrodes.

Materials:

  • Lignin, PAA, silicon nanoparticles, 1,4-dioxane

Preparation:

  • Lignin and PAA (1:3) in 1,4-dioxane ---> magnetic stirring---> heated at 60 degrees in air and 100 degrees for 10 h.

Electrode:

  • Si, acetylene black, L−PAA mixture (60:20:20) in 1,4-dioxane---> cast---> dried at 60 degrees for 2 h

Characterization:

  • spectrometer, NMR, tensile tests, Thermal analysis, DSC, DMA, thermal mechanical analyzer, SEM, XPS, electrochemical tests
Materials Lignin PAA silicon 1,4-dioxane
Equipment magnetic stirring oven
Characteriaztion spectrometer NMR tensile tests Thermal analysis DSC DMA thermal mechanical analyzer SEM XPS electrochemical tests

Extracting lignin-SiO2 composites from Si-rich biomass to prepare Si/C anode materials for lithium ions batteries[edit | edit source]

Li, Y., Liu, L., Liu, X., Feng, Y., Xue, B., Yu, L., Ma, L., Zhu, Y., Chao, Y., & Wang, X. (2021). Extracting lignin-SiO2 composites from Si-rich biomass to prepare Si/C anode materials for lithium ions batteries. Materials Chemistry and Physics, 262, 124331. https://doi.org/10.1016/j.matchemphys.2021.124331

  • obtaining Lignin-SiO2 out of rice husks through alkali extraction and acid precipitation, carbonazation, ball milling, magnesiothermic reduction and additives as anode.
  • Silicate & lignin have similar hydrolitic properties (solved by alkaline solution and precipitated by acidic solution)

Materials:

  • Rice husk, Sodium hydroxide, sulfuric acid, hydrofluoric acid, hydrochloric acid, graphite powder, polyethylene glycol-2000 (PEG), Mg powder, coal tar electrode pitch (CTEP), DI, ethanol

Preparation LS:

  • 50 g RH + 500 mL 1 M HCL---> extract by vacuum---> add in 350 mL 8% NaOH---> boiling 4 h---> vacuum filteration---> mix with DI and ethanol (2:1:1)--->1 M H2SO4 under magnetic stirring---> + 5 g PEG--->until PH 3--->vacuum filteration---> residue washed with DI---> dry at 100 degree

carbonization and ball-milling:

  • LS in quartz tube furnace at 700 ◦C for 2 h under Ar with 5 degrees per min rate---> cool to room naturally---> 6h ball mill

Magnesiothermic reduction:

  • 0.5 g of LS grounding with 0.33 g Mg powder---> 4.15 g KCL and 4.15 g LiCl--->quartz tube furnace and calcined at 650 ◦C for 5 h with 5 degrees per min rate---> cool to room---> wash by 1 M HCl for 5 h and 1 M HF for 20 min---> DI---> dry at 80 degrees

Additives modification:

  • 0.09 g of the LS-BM, 0.015 g CTEP and 0.015 g graphite in 80 mL ethanol & magnetic stir for 2h---> vacuum filteration---> residue---> wash with 80 mL ethanol---> dry at 80 degrees night---> calcined at 120 ◦C for 1 h and 850 for 3 h in quartz tube furnace in 5 ◦C min−1 rate---> cooling

Characterization:

  • TGA, XPS, SEM, TEM, Raman, BET, electrochemical tests
Materials Rice husk Sodium hydroxide sulfuric acid hydrofluoric acid hydrochloric acid graphite powder polyethylene glycol-2000 (PEG) Mg powder coal tar electrode pitch (CTEP DI ethanol
Equipment vacuum filteration magnetic stirring oven quartz tube furnace ball mill mortar
Characterization TGA XPS SEM Raman BET electrochemical tests

Silicon-Based Composite Negative Electrode Prepared from Recycled Silicon-Slicing Slurries and Lignin/Lignocellulose for Li-Ion Cells[edit | edit source]

Chou, C.-Y., Kuo, J.-R., & Yen, S.-C. (2018). Silicon-Based Composite Negative Electrode Prepared from Recycled Silicon-Slicing Slurries and Lignin/Lignocellulose for Li-Ion Cells. ACS Sustainable Chemistry & Engineering, 6(4), 4759–4766. https://doi.org/10.1021/acssuschemeng.7b03887

  • fabricating Lignin/Si anode.

Materials:

  • Lignin (derived from the acid hydrolysis process for the removal of hemicellulose and sodium), lignocellulose

Preparing composite:

  • pyrolysis of lignin and lignocellulose in tubular furnace in two steps, 1) Ar atmosphere and 2) air atmosphere----> sample weight between each stage---> 2g in ethanol ---> magnetic stirring--->+ 2g Si---> stir 2h---> sonicated 30 min---> viscous---> furnace at 600 degrees for 5h for calcination

electrode:

  • composite+carbon black+styrene butadiene rubber and carboxymethyl cellulose as binders (80:10:5:5) in ethanol (20 % solid)--->magnetically stirred for 1 h---> dry at 60 degrees

tests:

  • SEM, EDS, TGA, XRD, laser particle analyzer, Electrochemical cycling tests, CV, EIS

Developing and characterization of lignin-based fibrous nanocarbon electrodes for energy storage devices[edit | edit source]

Stojanovska, E., Pampal, E. S., Kilic, A., Quddus, M., & Candan, Z. (2019). Developing and characterization of lignin-based fibrous nanocarbon electrodes for energy storage devices. Composites Part B: Engineering, 158, 239–248. https://doi.org/10.1016/j.compositesb.2018.09.072

  • electrospinning of Lignin/PVA and use the product as anode. this study proves that lignin could be a promising material for storage devices.

Fast one-pot microwave preparation and plasma modification of porous carbon from waste lignin for energy storage application[edit | edit source]

Chen, W., Wang, X., Luo, M., Yang, P., & Zhou, X. (2019). Fast one-pot microwave preparation and plasma modification of porous carbon from waste lignin for energy storage application. Waste Management, 89, 129–140. https://doi.org/10.1016/j.wasman.2019.03.056

  • This research refers to fabricating biomass-based porous carbon by using Humidified microwave heating. In this regard, two time consuming and expensive steps preparation of this carbon, carbonization and activation, are eliminated. Also, hydrogen peroxide (H2O2), nitric acid (HNO3), sulfuric acid (H2SO4), and phosphoric acid (H3PO4) enhance the electrochemical properties of carbon. So, the microwave heating accours in humidified N2.

Materials:

  • Enzymatic hydrolysis lignin (EHL), KOH, N2, HCL, DI water

Preparing:

  • grounding EHL--> sieving--> dry---> 2g in KOH (1:3)---> stir 1h---> dry---> ground---> in microwave--->n2 injection before procedure--->800 W for 30 min---> in HCL---> DI water til PH 7---> dry (---------)

electrode:

  • carbon sample+acetylene black +polytetrafluoroethylene (8:1:1)+ ethanol

Tests:

  • gas adsorption analyzer, Brunauer–Emmett– Teller (BET), density functional theory (DFT), SEM, XPS, Raman, Electrochemical measurements
Material Enzymatic hydrolysis lignin (EHL) KOH N2 HCl deionized water acetylene blac polytetrafluoroethylene ethanol
Equipment micro-grinder mesh diameter oven mixer mortar quartz microwave reactor water bubbler quartz reactor
Characterization gas adsorption analyzer Brunauer–Emmett– Teller (BET) density functional theory (DFT) SEM XPS Raman Electrochemical measurements

Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[edit | edit source]

Du, Y.-F., Sun, G.-H., Li, Y., Cheng, J.-Y., Chen, J.-P., Song, G., Kong, Q.-Q., Xie, L.-J., & Chen, C.-M. (2021). Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity. Carbon, 178, 243–255. https://doi.org/10.1016/j.carbon.2021.03.016

  • This research focuses on pre-oxidation of lignin-base carbon to enhance the electrochemical capacity.
  • Preparation:
  • dissolving Sodium Lignosulfonate in water (20%) (raw material into spheres)---> atomizing---> dry---> heat at different temps (150, 200, 250) for 24h with muffle furnace---> in a tube furnace at 600 degrees for 2h (1 degree per min)---> wash
  • sample powder, binder (styrene butadiene rubber (SBR) and sodium carboxymethyl cellulose (CMC)), carbon Black (80:10:10)---> dry for 12 h at 80 degrees
Materials Sodium Lignosulfonate water styrene butadiene rubber (SBR) sodium carboxymethyl cellulose (CMC) carbon Black
Equipmen atomizer oven muffle furnace tube furnace
Characterization SEM TEM laser particle size analyzer thermogravimetric analysis coupled with a mass spectrometer (TG-MS) in-situ FTIR NMR elemental analyzer (ELEMENTAR XPS XRD CV EIS GCD

Lignin derived Si@C composite as a high performance anode material for lithium ion batteries[edit | edit source]

Du, L., Wu, W., Luo, C., Zhao, H., Xu, D., Wang, R., & Deng, Y. (2018). Lignin derived Si@C composite as a high performance anode material for lithium ion batteries. Solid State Ionics, 319, 77–82. https://doi.org/10.1016/j.ssi.2018.01.039

This project refering to coating Si NPs by alakli lignin-based carbon and dopping N2 to enhance electrochemical properties of Si-based anode.

preparing:

  • first composite: AL-azo-NO2 and 50 nm silicon (1:1) in THF---> ultrasonic---> stirring for 3 h---> fume hood to evaporate THF---> grounding---> furnace to 750 (5 degrees per min) N2 atmosphere for 4 h---> cooled naturally
  • second composite: AL instead of AL-azo-NO2

Electrode:

  • Si@C powder + super P +sodium alginate binder (8:1:1)---> milling for 30 min--> water---> micro-mixer for 30 min
Materials Alkali lignin (AL) Paranitroaniline Si nanoparticles THF NaNO2 sodium alginate Super P sodium alginate binder
Equipment Ultrasonic mixer fume hood mortar furnace ball mill micro-mixer
Characterization FE-SEM TEM XRD Raman TGA FT-IR UV/Vis/NIR Spectrometer electrochemical

Influence of Poly(ethylene oxide) (PEO) Percent and Lignin Type on the Properties of Lignin/PEO Blend Filament[edit | edit source]

Yu, Q., Bahi, A., & Ko, F. (2015). Influence of Poly(ethylene oxide) (PEO) Percent and Lignin Type on the Properties of Lignin/PEO Blend Filament: Influence of Poly(ethylene oxide) (PEO) Percent…. Macromolecular Materials and Engineering, 300(10), 1023–1032. https://doi.org/10.1002/mame.201500045

  • Lignin has VISCOELASTIC behaviour. This research aims to fabricate a filament with lignin and PEO mixure. The results show that HWKL/PEO blend filament, with 15 % PEO has very uniform diameter and smooth surface, adequate compression and tensile strength, and had thermally stable at a heating rate of 30 degrees per h.

Preparation:

  • HWKL in HCL---> methylene chloride---> stir for 39 min ---> filter---> 3 times (air-dried--->grounding)---> rotary evaporator at 20 degrees under reduced pressure---> increase to 50 for 30 min---> ground---> dry for 2 h
  • filament: thermal pretreatment at 45 degrees for 24 h---> mechanical blending ---> extrusion at 140 to 200
  • 3d printing: thermostabilizing the filament (mounted on stainless steel---> heat to 250 for 1 h)---> carbonize at N2 atmosphere at 1000 degrees at muffle furnace
Materials organosolv lignin hardwood kraft lignin PEO HCl methylene chloride
Equipment mixer filter mortar rotary evaporator oven extrusion FDM muffle furnace
Characterization optical microscope tensile strength caliper XRD

Highly Robust Lithium Ion Battery Anodes from Lignin: An Abundant, Renewable, and Low-Cost Material[edit | edit source]

Tenhaeff, W. E., Rios, O., More, K., & McGuire, M. A. (2014). Highly Robust Lithium Ion Battery Anodes from Lignin: An Abundant, Renewable, and Low-Cost Material. Advanced Functional Materials, 24(1), 86–94. https://doi.org/10.1002/adfm.201301420

  • This research aims to fabricate a lignin-based anode that acts also as current collector through melt processing and thermal conversion methods.

preparation:

  • hardwood fiber--> in polyethylene--->> lignin fiber mat---> heat to 250 degrees (oxidatively stabilized)--->Pyrolysis and carbonization in flowing Argon at 1000, 1500, 2000---> cool

electrode:

  • powder + poly(vinylidene difl ouride) (PVDF) binder + conductive carbon additives (Super C65) (83:15:2) in anhydrous N-methyl pyrrolidinone
Materials hardwood fiber polyethylene PVDF conductive carbon additives anhydrous N-methyl pyrrolidinone
Equipment oven mortar
Characterization SEM FIB TEM Raman XRD electrochemical

References[edit | edit source]

[1] Liu, Z., Tian, X., Liu, M., Duan, S., Ren, Y., Ma, H., Tang, K., Shi, J., Hou, S., Jin, H., & Cao, G. (2021). Direct Ink Writing of Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 ‐Based Solid‐State Electrolytes with Customized Shapes and Remarkable Electrochemical Behaviors. Small, 17(6), 2002866. https://doi.org/10.1002/smll.202002866

[2] Zhang, Y., Shi, G., Qin, J., Lowe, S. E., Zhang, S., Zhao, H., & Zhong, Y. L. (2019). Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Devices. ACS Applied Electronic Materials, 1(9), 1718–1734. https://doi.org/10.1021/acsaelm.9b00428

[3] Li, L., Tan, H., Yuan, X., Ma, H., Ma, Z., Zhao, Y., Zhao, J., Wang, X., Chen, D., & Dong, Y. (2021). Direct ink writing preparation of LiFePO4/MWCNTs electrodes with high-areal Li-ion capacity. Ceramics International, 47(15), 21161–21166. https://doi.org/10.1016/j.ceramint.2021.04.119

[4] Zhang, Q., Zhou, J., Chen, Z., Xu, C., Tang, W., Yang, G., Lai, C., Xu, Q., Yang, J., & Peng, C. (2021). Direct Ink Writing of Moldable Electrochemical Energy Storage Devices: Ongoing Progress, Challenges, and Prospects. Advanced Engineering Materials, 23(7), 2100068. https://doi.org/10.1002/adem.202100068

[5] Wei, P., Leng, H., Chen, Q., Advincula, R. C., & Pentzer, E. B. (2019). Reprocessable 3D-Printed Conductive Elastomeric Composite Foams for Strain and Gas Sensing. ACS Applied Polymer Materials, 1(4), 885–892. https://doi.org/10.1021/acsapm.9b00118

[6] Abas, M., Salman, Q., Khan, A. M., & Rahman, K. (2019). Direct ink writing of flexible electronic circuits and their characterization. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(12), 563. https://doi.org/10.1007/s40430-019-2066-3

[7] Wang, Z., Guan, X., Huang, H., Wang, H., Lin, W., & Peng, Z. (2019). Full 3D Printing of Stretchable Piezoresistive Sensor with Hierarchical Porosity and Multimodulus Architecture. Advanced Functional Materials, 29(11), 1807569. https://doi.org/10.1002/adfm.201807569

[8] Ao, S., Guo, Z., Song, Y., Fang, D., & Bao, Y. (2022). Clog-Free, Low-Cost, and Uniform Electrode Inks for 3D Printed Lithium-Ion Batteries. ACS Applied Energy Materials. https://doi.org/10.1021/acsaem.2c00594

[9] Lyu, Z., Lim, G. J. H., Guo, R., Kou, Z., Wang, T., Guan, C., Ding, J., Chen, W., & Wang, J. (2019). 3D-Printed MOF-Derived Hierarchically Porous Frameworks for Practical High-Energy Density Li–O2 Batteries. Advanced Functional Materials, 29(1), 1806658. https://doi.org/10.1002/adfm.201806658

[10] Wei, T., Ahn, B. Y., Grotto, J., & Lewis, J. A. (2018). 3D Printing of Customized Li‐Ion Batteries with Thick Electrodes. Advanced Materials, 30(16), 1703027. https://doi.org/10.1002/adma.201703027

[11] Ebers, L.-S., Arya, A., Bowland, C. C., Glasser, W. G., Chmely, S. C., Naskar, A. K., & Laborie, M.-P. (2021). 3D printing of lignin: Challenges, opportunities and roads onward. Biopolymers, 112(6), e23431. https://doi.org/10.1002/bip.23431

[12] Jiang, B., Yao, Y., Liang, Z., Gao, J., Chen, G., Xia, Q., Mi, R., Jiao, M., Wang, X., & Hu, L. (2020). Lignin‐Based Direct Ink Printed Structural Scaffolds. Small, 16(31), 1907212. https://doi.org/10.1002/smll.201907212

[13] Jung, H. Y., Lee, J. S., Han, H. T., Jung, J., Eom, K., & Lee, J. T. (2022). Lignin-Based Materials for Sustainable Rechargeable Batteries. Polymers, 14(4), 673. https://doi.org/10.3390/polym14040673

[14] Li, Q., Cao, D., Naik, M. T., Pu, Y., Sun, X., Luan, P., ... & Zhu, H. (2022). Molecular Engineering of Biorefining Lignin Waste for Solid-State Electrolyte. ACS Sustainable Chemistry & Engineering. https://doi.org/10.1021/acssuschemeng.2c00783

[15] Liu, B., Huang, Y., Cao, H., Song, A., Lin, Y., Wang, M., & Li, X. (2018). A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane. Journal of Solid State Electrochemistry, 22(3), 807–816. https://doi.org/10.1007/s10008-017-3814-x

[16] Culebras, M., Collins, G. A., Beaucamp, A., Geaney, H., & Collins, M. N. (2022). Lignin/Si Hybrid Carbon Nanofibers towards Highly Efficient Sustainable Li-ion Anode Materials. Engineered Science, Volume 17(0), 195–203.

[17] Liu, W., Liu, J., Zhu, M., Wang, W., Wang, L., Xie, S., Wang, L., Yang, X., He, X., & Sun, Y. (2020). Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Applied Materials & Interfaces, 12(51), 57055–57063. https://doi.org/10.1021/acsami.0c16865

[18] Luo, C., Du, L., Wu, W., Xu, H., Zhang, G., Li, S., Wang, C., Lu, Z., & Deng, Y. (2018). Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 6(10), 12621–12629. https://doi.org/10.1021/acssuschemeng.8b01161

[19] Yuan, J.-M., Ren, W.-F., Wang, K., Su, T.-T., Jiao, G.-J., Shao, C.-Y., Xiao, L.-P., & Sun, R.-C. (2022). Ultrahighly Elastic Lignin-Based Copolymers as an Effective Binder for Silicon Anodes of Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 10(1), 166–176. https://doi.org/10.1021/acssuschemeng.1c05359

[20] Li, Y., Liu, L., Liu, X., Feng, Y., Xue, B., Yu, L., Ma, L., Zhu, Y., Chao, Y., & Wang, X. (2021). Extracting lignin-SiO2 composites from Si-rich biomass to prepare Si/C anode materials for lithium ions batteries. Materials Chemistry and Physics, 262, 124331. https://doi.org/10.1016/j.matchemphys.2021.124331

[21] Chou, C.-Y., Kuo, J.-R., & Yen, S.-C. (2018). Silicon-Based Composite Negative Electrode Prepared from Recycled Silicon-Slicing Slurries and Lignin/Lignocellulose for Li-Ion Cells. ACS Sustainable Chemistry & Engineering, 6(4), 4759–4766. https://doi.org/10.1021/acssuschemeng.7b03887

[22] Stojanovska, E., Pampal, E. S., Kilic, A., Quddus, M., & Candan, Z. (2019). Developing and characterization of lignin-based fibrous nanocarbon electrodes for energy storage devices. Composites Part B: Engineering, 158, 239–248. https://doi.org/10.1016/j.compositesb.2018.09.072

[23] Chen, W., Wang, X., Luo, M., Yang, P., & Zhou, X. (2019). Fast one-pot microwave preparation and plasma modification of porous carbon from waste lignin for energy storage application. Waste Management, 89, 129–140. https://doi.org/10.1016/j.wasman.2019.03.056

[24] Du, Y.-F., Sun, G.-H., Li, Y., Cheng, J.-Y., Chen, J.-P., Song, G., Kong, Q.-Q., Xie, L.-J., & Chen, C.-M. (2021). Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity. Carbon, 178, 243–255. https://doi.org/10.1016/j.carbon.2021.03.016

[25] Du, L., Wu, W., Luo, C., Zhao, H., Xu, D., Wang, R., & Deng, Y. (2018). Lignin derived Si@C composite as a high performance anode material for lithium ion batteries. Solid State Ionics, 319, 77–82. https://doi.org/10.1016/j.ssi.2018.01.039

[26] Yu, Q., Bahi, A., & Ko, F. (2015). Influence of Poly(ethylene oxide) (PEO) Percent and Lignin Type on the Properties of Lignin/PEO Blend Filament: Influence of Poly(ethylene oxide) (PEO) Percent…. Macromolecular Materials and Engineering, 300(10), 1023–1032. https://doi.org/10.1002/mame.201500045

[27] Tenhaeff, W. E., Rios, O., More, K., & McGuire, M. A. (2014). Highly Robust Lithium Ion Battery Anodes from Lignin: An Abundant, Renewable, and Low-Cost Material. Advanced Functional Materials, 24(1), 86–94. https://doi.org/10.1002/adfm.201301420

FA info icon.svg Angle down icon.svg Page data
Authors Maryam Mottaghi
License CC-BY-SA-4.0
Language English (en)
Translations Chinese
Related 1 subpages, 4 pages link here
Impact 360 page views
Created July 17, 2022 by Maryam Mottaghi
Modified June 5, 2023 by Felipe Schenone
Cookies help us deliver our services. By using our services, you agree to our use of cookies.