Environment, Energy and Manufacturing[edit | edit source]

Robust optimization of machining conditions with tool life and surface roughness uncertainties.[edit | edit source]

Hippalgaonkar, R. R. & Shin, Y. C. (2010). Robust optimization of machining conditions with tool life and surface roughness uncertainties. International Journal of Production Research, doi:10.1080/00207543.2010.495207

The economics of the multi-pass turning problem is considered, while accounting for tool life uncertainty. The goal is to minimize the expected production cost per part, given the probability distribution for tool life, and with machining parameters being subject to practical constraints. The cost function accounts for machining cost, idling cost, tool changing cost as well as the cost associated with tool failure. A modified version of the particle swarm optimization (PSO) algorithm, called the dynamic objective PSO (or DOPSO), is used for minimization of the cost function. The decision variables include not only the machining parameters but also the tool replacement time. The equality constraint that the total desired depth of cut be achieved by an integral number of roughing passes and a single finishing pass is handled in a novel way, and together with including tool replacement time as a decision variable, this leads to lower costs than those cited by other comparable previous works. To handle uncertain constraints that lead to part failure when violated (e.g. desired surface finish), a robust formulation is also suggested through similar incorporation in the cost function, as for tool failure.

Energy conservation potential in Taiwanese textile industry[edit | edit source]

Gui-Bing Hong, Te-Li Su, Jenq-Daw Lee, Tsung-Chi Hsu, Hua-Wei Chen, Energy conservation potential in Taiwanese textile industry, Energy Policy, In Press, Corrected Proof, Available online 31 July 2010, ISSN 0301-4215, DOI: 10.1016/j.enpol.2010.07.024.

Abstract: Since Taiwan lacks sufficient self-produced energy, increasing energy efficiency and energy savings are essential aspects of Taiwan's energy policy. This work summarizes the energy savings implemented by 303 firms in Taiwan's textile industry from the on-line Energy Declaration System in 2008. It was found that the total implemented energy savings amounted to 46,074 ton of oil equivalent (TOE). The energy saving was equivalent to 94,614 MWh of electricity, 23,686 kl of fuel oil and 4887 ton of fuel coal. It represented a potential reduction of 143,669 ton in carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 3848 ha plantation forest. This study summarizes energy-saving measures for energy users and identifies the areas for making energy saving to provide an energy efficiency baseline.

The effect of environmental uncertainty on supply chain integration in Chinese manufacturing industry[edit | edit source]

Xu, Dehui; Zhao, Li; Li, Gang; Sun, Linyan; , "The effect of environmental uncertainty on supply chain integration in Chinese manufacturing industry," Service Systems and Service Management (ICSSSM), 2010 7th International Conference on , vol., no., pp.1-5, 28-30 June 2010 doi: 10.1109/ICSSSM.2010.5530165

Abstract: Supply chain integration nowadays is considered as an important approach to building and sustaining advantages. Many previous empirical researches focus on the effect of supply chain integration on the firms' performance, yet, the antecedence of supply chain integration is still largely unknown. This paper investigates the relationship between environmental uncertainty (including demand uncertainty, supply uncertainty and technology uncertainty) and supply chain integration (including customer integration, supplier integration and internal integration) with 139 samples from Chinese manufacturing industry. The results reveal both supply uncertainty and technology uncertainty significantly influence supply chain integration; the effect of supply uncertainty is negative, while that of technology uncertainty is positive. However, demand uncertainty just has a significant effect on internal integration. The relationship between demand uncertainty and external integration (including customer integration and supplier integration) is mediated by the internal integration.

A System Dynamics Model for the Environment Management of Eco-Industrial Park[edit | edit source]

Qu, Qingling; Qian, Xin; Wang, Jin; , "A System Dynamics Model for the Environment Management of Eco-Industrial Park," Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on , vol., no., pp.1-4, 18-20 June 2010 doi: 10.1109/ICBBE.2010.5517238

Abstract: As industrial chain is important for the sustainability of an eco-industrial system, we formulate a system dynamic model emphasizing on importance of industrial chain. Taking machine manufacturing industry of Xuzhou Economic Development Zone for example, a system dynamic model including 6 flows (population, material, capital, technology, water, energy) is designed. By sensitivity analysis 3 sensitive parameters including technological investment ratio, network association degree, and diversity index are identified as sensitive parameters. Corresponding scenarios are simulated and suggestions on the sustainable development of the economic development are given.

Energy Model for manufacturing process: A case study of wind turbine[edit | edit source]

Bingbing Li; Hong-Chao Zhang; Qingdi Ke; , "Energy model for manufacturing process: A case study of wind turbine," Sustainable Systems and Technology (ISSST), 2010 IEEE International Symposium on , vol., no., pp.1-1, 17-19 May 2010, doi: http://dx.doi.org.proxy.queensu.ca/10.1109/ISSST.2010.5507700

AbstractThe energy consumption of manufacturing of wind turbine is largest impact contributor in various characterization categories, based on the assessment of environmental effects during the whole life cycle of the wind turbine. The article discusses three important aspects of manufacturing processes to find out opportunities to improve energy efficiency while protecting the environment.

Applying CES to assembly and comparing carbon footprints.[edit | edit source]

Jeswiet, J. & Nava, P. (2009). Applying CES to assembly and comparing carbon footprints. International Journal of Sustainable Engineering, 2(4), 232-240.

A Carbon Emission Signature (CES) and a Carbon Emission Label have been proposed for manufactured products in previous CIRP (Collège International pour la Recherche en Productique) annals. This paper considers two things: (1) an example of a CES calculation for assembly with CO2 emissions and (2) the need for a transparent method of calculation. In comparing carbon footprint calculations for 17 websites, the results are found to vary more than threefold depending upon the site used and even more between different methods illustrating the need for standardization in emission calculations for carbon accounting.

Eco-Innovation in Industry[edit | edit source]

Organization for Economic Co-operation and Development,OECD (2009).Eco-Innovation in Industry- Enabling green growth, pp 1- 280.

Review:Eco-innovation will be a key driver of industry efforts to tackle climate change in the post-Kyoto era. This is perhaps the main conclusion published in a new book on green growth by OECD.It is based on a project on sustainable manufacturing and eco-innovation, which aims to accelerate sustainable industrial production through the diffusion of existing knowledge and the facilitation of the benchmarking of products and production processes.It also promotes the concept of eco-innovation while stimulating new technological development and systemic solutions to global environmental challenges.

Carbon footprinting upstream supply chain for electronics manufacturing and computer services[edit | edit source]

Huang, Y.A.; Weber, C.L.; Matthews, H.S.; , "Carbon footprinting upstream supply chain for electronics manufacturing and computer services," Sustainable Systems and Technology, 2009. ISSST '09. IEEE International Symposium on , vol., no., pp.1-6, 18-20 May 2009

Abstract: Corporations and institutions, including the electronics manufacturing and computer services sectors have become concerned with their impacts on climate change and are participating in carbon footprint assessment and climate management discussions. Existing carbon footprint protocols classify carbon footprint into tiered ldquoScopesrdquo: direct emissions as ldquoScope 1rdquo, emissions from direct purchased energy as ldquoScope 2rdquo, and all other indirect emissions as optional ldquoScope 3.rdquo Because Scopes 1 and 2 footprints are generally less than 25% of the total direct and upstream footprint for a vast majority of businesses, Scope 3 emissions should not be ignored as knowledge of them can help inform more holistic approaches to address life cycle footprint across the supply chain. This research uses input-output life cycle assessment methods to conduct a ldquoscoping analysisrdquo that characterizes the carbon footprint profiles of 8 electronics manufacturing and computer services sectors. The results show that there are significant variations in the portions of total analyzed footprint captured by each footprint Scope among this sector group. Most of the footprints for the electronics manufacturing sectors do not come from their Scope 1 emissions, but from the embodied emissions in the supplies of parts, components, chemicals, and materials. Purchases of food, air transportation, and hotel accommodation from employees traveling to customer locations are found to be the largest sources of upstream Scope 3 footprint for computer system design services sector. The results presented in this work are intended to inform footprinting entities and companies of the potential Scope 3 subcategories to focus their footprint efforts.

Impact of energy efficiency on computer numerically controlled machining[edit | edit source]

S E Anderberg, S Kara, T Beno,(2009)Impact of energy efficiency on computer numerically controlled machining, Journal Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2041-2975

Abstract:Increasing environmental demands from governmental bodies and customers stress the importance of companies improving their environmental performance. The research presented here shows that productivity and cost efficiency improvements can be achieved alongside energy savings in a computer numerically controlled machining environment. This improves the profitability of the companies, but also leads them towards more sustainable and environmentally aware manufacturing; the relationship between machining parameters, machining costs, and energy consumption is evaluated. From this perspective, it is important that production planners etc. understand the methodological possibilities for improvements in cost and energy efficiency. The current research is based on a machining cost model and experiments where energy consumption and tool wear were monitored.

Carbon weight analysis for machining operation and allocation for redesign[edit | edit source]

Ameta G, Mani M, Rachuri S, Feng SC, Sriram RD, Lyons KW. 2009. Carbon weight analysis for machining operation and allocation for redesign. International Journal of Sustainable Engineering 2(4):241-251. Accessed 2010 Jan 21.

Abstract:The objective of this research paper is to explore and develop a new methodology for computing carbon weight (CW) – often referred to as carbon footprint, in manufacturing processes from part level to assembly level. In this initial study, we focused on machining operations, specifically turning and milling, for computing CW. Our initial study demonstrates that CW can be computed using either actual measured data from process level information or from initial material and manufacturing process information. In mechanical design, tolerance analysis principles extend from design to manufacturing and tolerances accumulate for parts and processes. By extending this notion to CW, we apply mechanical tolerancing principles for computing worst case and statistical case CW of a product. We call this the CW tolerance approach (CWTA). Two case studies demonstrate the computation of CW. Based on the tolerance allocation concepts; CW allocation is also demonstrated through specific redesign examples. CWTA helps in identifying carbon intensive parts/processes and can be used to make appropriate design decisions.

COLD START FOR THE GREEN INNOVATION MACHINE[edit | edit source]

P Aghion, R Veugelers, C Serre,COLD START FOR THE GREEN INNOVATION MACHINE Bruegel Policy Contribution, ISSUE 2009/12, NOVEMBER 2009

12 Jan 2010

States and Trends of the Carbon Market 2009[edit | edit source]

Capoor, K. and Ambrosi, P., 2009.States and Trends of the Carbon Market 2009, The World Bank, Washington DC, May.

21 Jan 2010

A generic energy consumption model for decision making and energy efficiency optimization in manufacturing[edit | edit source]

Dietmair, Anton; Verl, Alexander. "A generic energy consumption model for decision making and energy efficiency optimization in manufacturing Research Article" International Journal of Sustainable Engineering 2(2), 123-133. (2009).

Today, energy efficiency in production systems has partially been achieved on the component level, but methods are missing for the energy optimal operation of plants, machines and components. We therefore, propose a novel generic method to model the energy consumption behavior of machines and plants based on a statistical discrete event formulation. It is lean, integrative and scalable and can be used directly in planning processes to make predictions of the energy consumption of different configurations in different scenarios based on any amount of available information. Using the modeling framework, we introduce applications in real-time, tactical and strategic decision making processes that make it possible to exploit the potential for energy consumption minimization of any given machine or production system while obeying conflicting general conditions. 14 Jan 2010

Life cycle engineering: Applying life cycle knowledge to engineering solutions[edit | edit source]

Sami Kara, Life cycle engineering: Applying life cycle knowledge to engineering solutions , CIRP Journal of Manufacturing Science and Technology, Volume 1, Issue 4, Life Cycle Engineering, 2009, Page 213

, ISSN 1755-5817, DOI: [1]

Process chain simulation to foster energy efficiency in manufacturing[edit | edit source]

Christoph Herrmann, Sebastian Thiede, Process chain simulation to foster energy efficiency in manufacturing, CIRP Journal of Manufacturing Science and Technology, Volume 1, Issue 4, Life Cycle Engineering, 2009, Pages 221-229, ISSN 1755-5817, DOI: [2]. Keywords: Sustainable manufacturing; Energy efficiency; Simulation; Process chain

A customer value model for sustainable service design[edit | edit source]

Koji Kimita, Yoshiki Shimomura, Tamio Arai, A customer value model for sustainable service design, CIRP Journal of Manufacturing Science and Technology, Volume 1, Issue 4, Life Cycle Engineering, 2009, Pages 254-261, ISSN 1755-5817, [3]. Keywords: Service Engineering; Design support; Customer requirement; Customer value modeling; Service quality; Quality design

Proposal of sustainable society scenario simulator[edit | edit source]

Yasushi Umeda, Takeshi Nishiyama, Yasuhiro Yamasaki, Yusuke Kishita, Shinichi Fukushige, Proposal of sustainable society scenario simulator, CIRP Journal of Manufacturing Science and Technology, Volume 1, Issue 4, Life Cycle Engineering, 2009, Pages 272-278, ISSN 1755-5817, [4]. (http://www.sciencedirect.com/science/article/B8JGX-4WK4310-2/2/b10c86ad0c9cab7f5ac070b25b29e6e0) Keywords: Sustainable manufacturing; Scenario; Sustainable society scenario simulator; Logical structure; Scenario analysis; Structural representation of scenarios; IPCC

Simulation-based sustainable manufacturing system design[edit | edit source]

Heilala, J.; Vatanen, S.; Tonteri, H.; Montonen, J.; Lind, S.; Johansson, B.; Stahre, J.; , Simulation-based sustainable manufacturing system design, Simulation Conference, 2008. WSC 2008. Winter , vol., no., pp.1922-1930, 7-10 Dec. 2008

Abstract: Manufacturing simulation and digital engineering tools and procedures have had a positive impact on the manufacturing industry. However, to design a sustainable manufacturing system, a multitude of system dimensions must be jointly optimized. This paper proposes an integrated simulation tool helping to maximize production efficiency and balance environmental constraints already in the system design phase. Lean manufacturing, identification and elimination of waste and production losses, and environmental considerations are all needed during development of a sustainable manufacturing system. Engineers designing the manufacturing system need decision support, otherwise sub-optimization is more likely to occur. We present methods for calculating energy efficiency, CO2 emissions and other environmental impacts integrated into factory simulation software.

Using Micro-data for the Assessment of Carbon Emissions in the New Zealand Manufacturing Industry (2008)[edit | edit source]

Paper presented at Markets and Models: Policy Frontiers in the AWH Phillips Tradition,at Wellington, New Zealand,9-11 July 2008<ref>Martin Brown-Santirso and Nedra Fu, 2008,Using Micro-data for the Assessment of Carbon Emissions in the New Zealand Manufacturing Industry,Paper presented at Markets and Models: Policy Frontiers in the AWH Phillips Tradition,at Wellington, New Zealand,9-11 July 2008

  • This study also makes use of the Annual Enterprise Survey (AES) unit record data to

directly compare the intermediate consumption values for each enterprise against costs of carbon emissions at several carbon price scenarios ($15, $25, $50 and $100 dollars per tonne). Thus, the study generates an estimate of the added cost of production that arises from energy related carbon emissions for each enterprise.

Metal forming progress since 2000,[edit | edit source]

J. Jeswiet, M. Geiger, U. Engel, M. Kleiner, M. Schikorra, J. Duflou, R. Neugebauer, P. Bariani, S. Bruschi, Metal forming progress since 2000, CIRP Journal of Manufacturing Science and Technology, Volume 1, Issue 1, 2008, Pages 2-17, ISSN 1755-5817, DOI: [5]. Keywords: Metal forming

Product conceptual design based on the idea of sustainable design[edit | edit source]

Qun Huang; Nana Zhang; , "Product conceptual design based on the idea of sustainable design," Computer-Aided Industrial Design and Conceptual Design, 2008. CAID/CD 2008. 9th International Conference on , vol., no., pp.377-379, 22-25 Nov. 2008 Abstract: The statement of sustainable design transcends original idea of product design, and has new requirements of the process of product design and impact on environment. Product conceptual design is the core of product innovation. And conceptual development of products and design of products decisively influence product detailed design, product manufacturing development, product market development as well as the realization of enterprises¿ business strategic goal in the process of product innovation. This article mainly elaborate the importance of following the idea of sustainable design from design connotations, design principles and design purpose of product conceptual design, thus able to shorten the disparity of conceptual design and changes in the market, so that conceptual products made by product conceptual design can be a great degree of putting on the market and be successful.

Carbon emissions and CESTM in manufacturing.[edit | edit source]

Jeswiet, J. and Kara, S., 2008. Carbon emissions and CES (TM) in manufacturing. CIRP Annals - Manufacturing Technology, 57 (1), 17–20.

Abstract: The manufacturing of a product is connected directly to the amount of carbon emitted in producing electrical energy for that manufacturing process. A new, simple Carbon Emission Signature, CES(TM), is proposed. Knowing the CES for a power grid and the energy needed to make a part, the carbon emitted can be found. Examples of single point turning and open die forging are given. Knowing the total carbon emitted for a product, a manufacturer can place a Green House Gas (GHG) label on each product. A customer can then see the amount of Green House Gas emitted in making the product.

A carbon emission signature for products[edit | edit source]

Transactions of the North American Manufacturing Research Institution of SME [1047-3025] Jeswiet yr.2008 pg.317 -324

A perspective on manufacturing strategy: Produce more with less[edit | edit source]

G. Chryssolouris, N. Papakostas, D. Mavrikios, A perspective on manufacturing strategy: Produce more with less, CIRP Journal of Manufacturing Science and Technology, Volume 1, Issue 1, 2008, Pages 45-52, ISSN 1755-5817, DOI:[6]. Keywords: Manufacturing; Environment; Production efficiency; Materials; Manufacturing processes; Recycling; Information technology

Environmental analysis of the Product Life Cycle by using an aggregated metric based on exergy[edit | edit source]

Coatane´a, E., Kuuva, M., Makkonen, P. and Saarelainen, T.,2007. Environmental analysis of the Product Life Cycle by using an aggregated metric based on exergy International Journal of Product Lifecycle Management, 2 (4),337–355.

Abstract:Environmental accountancy and environmental impacts analysis are characterized by fragmented approaches encompassing a number of different perspectives and analytical techniques. Although Life Cycle Assessment (LCA) method is the most commonly used tool by which environmentally conscious design is carried out, the scientific reliability of LCA techniques has been questioned. Indeed, LCA techniques include limitations such as a lack of adequate inventory data, disparate underlying assumptions and environmental assessment made in terms that are not directly comparable. Those restrictions limit the applicability of LCA methods during early development stages. This article addresses this shortcoming by outlining previous researches in life cycle analysis and thermodynamics. It is argued herein that the early development phases require a simplified approach based on exergy. It is argued that the concept of exergy is a broad-based measure assessing the environmental impact and resource consumption of the Product Life Cycle (PLC). In addition, the article addresses a more ambitious research problem by integrating environmental impact and resource consumption into a broader design framework, described briefly in this article. The aim of the design framework presented herein is to optimize the comparison and evaluation process, which ends the early design process. This is in our viewpoint the first step of our work toward unified design theory based on topological principles.

21 Jan 2010

Smart Machining Systems: Robust Optimization and Adaptive Control Optimization for Turning Operations[edit | edit source]

Ivester, R. and Heigel, J., (2007), Smart Machining Systems: Robust Optimization and Adaptive Control Optimization for Turning Operations, Transactions of NAMRI/SME, Vol. 35, pp. 502 - 512

Cutting force models, often developed from a narrow set of empirical data, provide insight into the physical properties of cutting, but the extreme physical phenomena of metal cutting and the many uncertainties in an industrial setting (machine tool, workpiece material, tooling, environmental conditions) hinder predictability. In order to improve the practicality of model-based decision making in an industrial machining environment, this paper introduces a method to adapt parameters of a traditional empirical model in response to on-line measures of process performance. This method enables Smart Machining Systems to self-monitor production performance and adapt models and process parameters to the conditions encountered in production environments, reducing the need for expensive empirical tests.

Green Manufacturing: An Evaluation of Environmentally Sustainable Manufacturing Practices and Their Impact on Competitive Outcomes[edit | edit source]

Rusinko, C.A.; ,[7] "Green Manufacturing: An Evaluation of Environmentally Sustainable Manufacturing Practices and Their Impact on Competitive Outcomes," Engineering Management, IEEE Transactions on , vol.54, no.3, pp.445-454, Aug. 2007

Abstract: Increasingly, stakeholders are asking or requiring organizations to be more environmentally responsible with respect to their products and processes; reasons include regulatory requirements, product stewardship, public image, and potential competitive advantages. This paper presents an exploratory study of the relationships between specific environmentally sustainable manufacturing practices, and specific competitive outcomes in an environmentally important but under-researched industry, the U.S. commercial carpet industry. In general, empirical research on the impact of environmental practices on organizational outcomes is inconclusive, partly due to limitations of earlier studies. This paper addresses some of these limitations, and surveys the entire U.S. commercial carpet industry; respondents represent 84 of the market. Findings suggest that environmentally sustainable manufacturing practices may be positively associated with competitive outcomes. In particular, different types of environmentally sustainable manufacturing practices (e.g., pollution prevention, product stewardship) are associated with different competitive outcomes (e.g., manufacturing cost, product quality). These specific findings can be helpful to engineering and operations managers as they respond to environmental and competitive demands.

Positive Trends and Opportunities for Sustainable Design in Operations Management Textbooks[edit | edit source]

Stuart Williams, J.A.; , "Positive Trends and Opportunities for Sustainable Design in Operations Management Textbooks With Examples from the Electronics Industry," Electronics & the Environment, Proceedings of the 2007 IEEE International Symposium on , vol., no., pp.57-60, 7-10 May 2007

Abstract: In recent editions of operations management textbooks, sections have been added on topics related to sustainable design. Many of the textbook discussions illustrate design for environment, remanufacturing, and recycling with examples from the electronics industry. Building on this positive trend, this paper points out how educators can further enhance student learning by expanding existing exercises and discussions with additional resources. The paper concludes with a call to integrate sustainable design concepts into operations management and other non-environmental engineering fields that impact product design.

Electrical Energy Requirements for Manufacturing Processes[edit | edit source]

Timothy Gutowski, Jeffrey Dahmus, and Alex Thiriez,Electrical Energy Requirements for Manufacturing Processes,13th CIRP International Conference on Life Cycle Engineering, Leuven, May 31st – June 2nd, 2006, pp 623 -627

AbstractThis paper collapses the specific electrical energy requirements for a wide range of manufacturing processes into a single plot. The analysis is cast in an exergy framework. The results show: 1) the specific energy requirements for manufacturing processes are not constant as many life cycle analysis tools assume, 2) the most important variable for estimating this energy requirement is the process rate, and 3) the trend in manufacturing process development is toward more and more energy intensive processes. The analysis presented here also provides insight into how equipment can be redesigned in order to be more energy efficient. 26 Feb 2010

An environmental analysis of machining.[edit | edit source]

Dahmus, J. and Gutowski, T., 2004. An environmental analysis of machining. Proceedings of the 2004 ASME International Mechanical Engineering Congress and RD&D Exposition, Anaheim, CA, 13–19 November.

  • find article!

21 Jan 2010

A new eco-design strategy to assess sustainable environmental innovations[edit | edit source]

Jofre, S.; Tsunemi, K.; Morioka, T.; , "A new eco-design strategy to assess sustainable environmental innovations," Environmentally Conscious Design and Inverse Manufacturing, 2003. EcoDesign '03. 2003 3rd International Symposium on , vol., no., pp. 81- 88, 8-11 Dec. 2003

Abstract: This paper analyzes and discusses the potential role of evolutionary theories in environmental innovation with emphasis on sustainability. The study focuses on the dynamic mechanisms driving the adaptation of products to their changing environments. As a result, a strategy, called Eco-evolution, is proposed. Eco-evolution is a strategy based on incremental innovation through re-examination of existent knowledge and technological trajectories. The strategy attempts the identification of lock-in of non-optimal technologies and sustainable alternatives, in order to outline the sustainable design and organizational horizons. To illustrate the practical application of the strategy, an example based on domestic refrigerators is included. The study concludes that eco-evolution is efficient when identifying non-optimal technological trajectories and sustainable options for innovation on the basis of existent knowledge.

Eco-value as an indicator for sustainable design[edit | edit source]

Fumikazu, M.; Satsuki, K.; Naoki, L.; Kengo, K.; Rei, S.; Kenji, Y.; Satoko, W.; Risa, U.; Katsura, E.; Tomohisa, K.; Tsuneya, K.; Tomoya, S.; Takuya, S.; Mie, S.; Masashi, S.; Kenji, T.; Chie, T.; Yusuke, N.; Akiko, N.; Rie, H.; Nobuko, H.; Kiyotaka, H.; Kana, H.; Masashi, Y.; ,"Eco-value as an indicator for sustainable design," Environmentally Conscious Design and Inverse Manufacturing, 2001. Proceedings EcoDesign 2001: Second International Symposium on , vol., no., pp.1106-1109, 2001

Abstract: The ideal sharing system should lower environmental impact by reducing a total amount of production and consumption, and this could be achieved by the shift in human desire for products. More emphasis on shared products' function supports the ideal sharing system for correct operation. Industrial designers should promote this shift in life style by providing attractive and sustainable design with people

Computer-aided economic optimization of end-milling operations[edit | edit source]

J. Wang, Computer-aided economic optimization of end-milling operations, International Journal of Production Economics, Volume 54, Issue 3, 18 May 1998, Pages 307-320

Abstract:Optimization analysis, strategy and CAM software for single pass end-milling on CNC machine tools are outlined and discussed based on criteria typified by the maximum production rate and allowing for a range of machine tool and component surface roughness constraints. It is shown that the deterministic optimization approach involving mathematical analyses of constrained economic trends and their graphical representation on the feed-speed domain provides a deeper understanding of the influences of constraints and a clearly defined strategy which guarantees the global optimum solutions. Numerical simulation studies have amply demonstrated the economic benefits of using this strategy over handbook recommendations as well as in assessing, selecting and improving machine tool design specifications.

14 Jan 2010

On the optimization of machining parameters for milling operations[edit | edit source]

M. Tolouei-Rad, I. M. Bidhendi, On the optimization of machining parameters for milling operations, International Journal of Machine Tools and Manufacture, Volume 37, Issue 1, January 1997, Pages 1-16

Abstract:Owing to the significant role that machining parameters play in performing successful and efficient machining operations, determination of the best or optimum machining parameters is still the subject of many studies. The need to use optimum machining parameters to improve machining efficiency is of greater importance when NC machines with high capital cost are employed. This paper describes development and utilization of an optimization system which determines optimum machining parameters for milling operations. These parameters are intended for use by NC machines, however, they can also be used by conventional machines. The paper discusses both single-tool and multi-tool milling operations where emphasis has been placed on the latter. An example has been presented at the end of the paper to give a clear picture from the application of the system and its efficiency.

12 Jan 2010

Manufacturing Engineering and Technology.[edit | edit source]

Kalpakjian, S., 1995. Manufacturing Engineering and Technology.3rd ed. Reading, MA: Addison-Wesley. [8]

Applications of life cycle assessment: expectations, drawbacks and perspectives.[edit | edit source]

Helias A. Udo de Haes, Applications of life cycle assessment: expectations, drawbacks and perspectives. , Journal of Cleaner Production, Volume 1, Issues 3-4, 1993, Pages 131-137

Abstract: In this article an overview is given of present applications of life cycle assessment (LCA) as an instrument for the support of decision-making. Attention is given to original expectations, present drawbacks and future perspectives. The following dimensions are chosen for this overview: the main users, with a distinction between governments, companies and non-governmental organizations; the level of sophistication, distinguishing between LCA as a concept, qualitative LCA and quantitative LCA, with varying degrees of detail within the latter; a distinction between applications at an operational and at a strategic level; a distinction between internal and external applications; and finally the level of completeness of the study, i.e. which limitations are set a priori for a study. Three types of drawbacks are encountered: purely technical problems, methodological problems and communication problems. Possible ways to cope with these are discussed.

21 Jan 2010

Integrated End Milling Optimization Development[edit | edit source]

V.A. Ostafiev, A.V. Globa, L.S. Globa, T.N. Loladze,Integrated End Milling Optimization Development, CIRP Annals - Manufacturing Technology, Volume 33, Issue 1, 1984, Pages 29-32

Abstract: Integrated method of end milling has been developed to optimize both cutter path, type of tools, number of outs and cutting conditions. Method of Data Handling by Groups(MDHG) was used to set up a model for complex non-homogeneous systems with minimum data applied. Machining analytical introduction carrying from manufacturing process data directly with reliable accuracy was got by MDHG. For creating technological process variables relationships now used manufacturing statistics taking in account the shop production conditions. Two stages iterative mode interacting was carried out for optimization process: 1- the process structure has been optimized by cutter path, type of tools and number of cuts;2- using nonlinear programming the generalized Lagrange Multiplier Method for cutting condition optimization. Increase shop production rate has been confirmed by the method proposed. 14 Jan 2010

Environmental/Economic Considerations[edit | edit source]

Reflections on the economics of climate change[edit | edit source]

Nordhaus WD. Reflections on the economics of climate change. Journal of Economic Perspectives (1993); 7(4) 11-25 at 15

An optimal transition path for slowing climate change[edit | edit source]

Nordhaus WD. An optimal transition path for slowing climate change. Science 1992; 258: 1315-19.

Emissions Trading and NOx and SOx Emissions Limits for Ontario's Electricity Sector[edit | edit source]

Ontario Ministry of the Environment. (2007)[Emissions Trading and NOx and SOx Emissions Limits for Ontario's Electricity Sector.][9][10]

regulation of SOx and NOx means using equipment to contain or reduce emissions. Reducing energy use also reduces the costs associated with these.

Environmental Externalities in Electric Power Markets: Acid Rain, Urban Ozone, and Climate Change[edit | edit source]

J. Carlin. (2002) Environmental Externalities in Electric Power Markets: Acid Rain, Urban Ozone, and Climate Change. Energy Information Administration.

Electric power plants that burn fossil fuels emit several pollutants linked to the environmental problems of acid rain, urban ozone, and the possibility of global climate change. Damages caused by those emissions are viewed by many economists as "externalities" and an inefficiency of the market when electric power rates do not reflect, nor ratepayers directly pay, the associated social costs. Until recently, efforts to control power plant emissions have focused on the command-and-control approach of setting standards. More recent efforts, including the Clean Air Act Amendments of 1990, have involved incentive-based measures, such as emissions fees and systems of marketable emissions allowances. A few State regulatory bodies are experimenting with methodologies to "price" environmental externalities and incorporate that cost information in deliberations about least-cost ways to meet projected demand for electric power. The spread of these methodologies could be affected by increased competition in the electricity industry, which would allow electric power customers direct access to a variety of electric power providers.

The Role of Economics in Climate Change Policy[edit | edit source]

Mckibbin, Warwick and Wilcoxen, Peter J, (2002), The Role of Economics in Climate Change Policy, Journal of Economic Perspectives, 16, issue 2, p. 107-129.

Abstract: The most important characteristic of climate change as a policy problem is uncertainty. From climatology to economics, uncertainties are pervasive, large and difficult to resolve. However, the economic theory of environmental policy under uncertainty provides a clear guide to the design of an appropriate policy. An efficient and practical approach would be a hybrid that incorporates the best features of tradable permits and emissions taxes. Unfortunately, international negotiations have taken a different approach, focusing on rigid targets and timetables for emissions reductions. The result has been the Kyoto Protocol, an agreement with no real chance of reducing greenhouse gas emissions.

Online Books[edit | edit source]

"From a quantitative perspective, multidisciplinary optimization is a highly technical emerging discipline. It relies heavily on mathematics, statistics, operations research, computer science, software engineering, and all of the particular disciplines which fall within the scope of the particular problem to be solved. From a qualitative perspective, multidisciplinary optimization is an emerging discipline which encompasses quality, cost, value, and genopersistation."......."Activity based costing (ABC), while not perfect, does represent unit cost and lot cost much better than the old unit cost techniques. Thus, future parametric cost analysis should be based upon activity based costing. Here, the cost of an activity would be mapped to attributes of the system to bring forth, sustain, and retire the product and to attributes of the input and output of the activity. These attributes are called quality characteristics within quality function deployment. I call such models parametric activity based models."

Software[edit | edit source]

Machining Economics Calculator,Sandvik Coromant Company <accessed Feb 24th, 2010>

OPENLCA [11]

CMLCA

STELLA

POWERSIM

Netlogo

Starlogo

MATLAB

ANSYS

RADIOSS

Fortran

Solid Works (with LCA app)

GaBi

Useful Links[edit | edit source]

Papers not bought:

  1. Carbon Emission Signature for Products: http://www.sme.org/cgi-bin/get-item.pl?TP08PUB81&2&SME
  2. Awaiting Paper: [12] Development Overview of Sustainable Manufacturing Metrics

Climate Change and Regulation[edit | edit source]

  1. The Pembina Institute: Climate Change [13]
  2. Carbon taxing or trading [14]
  3. Sustainable Manufacturing Metrics [15]

Manufacturing[edit | edit source]

  1. Green Manufacturing Blog

Computing Carbon Weight, Footprint and Guideline[edit | edit source]

  1. GHG Quantification Resources from Environment Canada
  2. Scheme for Computing Carbon Weight (footprint) for Manufactured Products Project, NIST
  3. Rapid Manufacturing May Deliver Carbon & Cost Savings
  4. Sustainable and Lifecycle Information-based Manufacturing
  5. A definition of carbon footprint
  6. An Exploration of the Structure and Development of Carbon Footprint Analysis
  7. Measure Carbon Emissions
  8. Carbon Footprint

Economics and Engineering[edit | edit source]

  1. Linking Economic Model and Engineering Model: Application of Sequential Interindustry Model (SIM)
  2. Chapter in Manufacturing and Economics
  3. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-73862000000200005

United Nations Environment Programme (UNEP)

Intergovernmental Panel On Climate Change (IPCC)

Databases[edit | edit source]

==Citations==User:Kadra09

FA info icon.svg Angle down icon.svg Page data
Authors Kadra Branker
License CC-BY-SA-4.0
Language English (en)
Related 0 subpages, 1 pages link here
Impact 13 page views (more)
Created May 24, 2022 by Irene Delgado
Last modified June 13, 2024 by Kathy Nativi
Cookies help us deliver our services. By using our services, you agree to our use of cookies.