In acetone-butanol fermentation, acetone and butanol are produced from glucose using strains of Clostridiua, which are strictly anaerobic bacteria. Further, ethanol is also produced and therefore this is also often called ABE fermentation. Two distinct metabolic pathways exist, one producing butanol from starch, the other producing butanol from sucrose. It yields 3 parts of acetone, 6 of butanol and 1 of ethanol.

ABE fermentation is one of the oldest known industrial fermentation methods with a history of more than 100 years. In the first part of the 20th century, it ranked second only to ethanol fermentation. In 1861 butanol production through microbial fermentation was reported for the first time by Pasteur. This was followed by Schardinger in 1905 reporting production of acetone by fermentation. From 1912 to 1914 strains of Clostridium acetobutylicum were isolated by Chaim Weizmann which had the ability of fermenting starchy substrate. ABE fermentation was utilized to produce acetone during WWI to make the explosive cordite and in the production of synthetic rubber. In WWII, butanol was produced as fuel for fighter planes. The process disappeared in the second part due to the rise of the petrochemical industry.

After brief resurgence of interest in the 1970s and early 1980s, interest in butanol as a biofuel dropped off during the cheap oil era. It has now revived, as it can be used as a direct gasoline substitute in unmodified internal combustion engines. Butanol, when consumed in an internal combustion engine, yields no SOX, NOX or carbon monoxide, all environmentally harmful byproducts of combustion. CO2 is the combustion byproduct of butanol, and is considered environmentally 'green'. Butanol is far less corrosive than ethanol and can be shipped and distributed through existing pipelines and filling stations. It does not have the safety problems associated with the infrastructure of the "hydrogen economy". Reformed butanol has four more hydrogen atoms than ethanol, resulting in a higher energy output. It can be used in fuel cells. Butanol is an industrial commodity, with a 370 million gallons per year market with a selling price of $3.75 per gallon.

Feedstocks[edit | edit source]

  • Molasses and starch (e.g. out of maize, wheat, rye, potatoes...) - all fairly expensive though
  • The Jerusalem artichoke is an agricultural crop with considerable potential as a carbohydrate substrate for ABE fermentation. Short oligomeric fructans are the main carbohydrate forms which occur in the tuber. They must be hydrolyzed by acid or inulase prior to fermentation.
  • Cheese whey is a good alternative ABE fermentation substrate because of its lactose content and availability. Cheese whey contains relatively low sugar (4-5 % lactose) and so it is not suitable for most fermentations without prior concentration. But it is suitable for ABE fermentation because the sugar consumption of Clostridia is limited by product toxicity.
  • Apple pomace is a solid agricultural waste and it contains about 10 % (wt/wt) carbohydrates (67 % fructose, 23 % glucose and 10 % sucrose).
  • Algal biomass is also considered to become a suitable fermentation substrate because of advantages in utilization and bioconversion.
  • Straw is a representative of lignocellulosic plants and is one of the most abundant renewable resources all over the world. Components such as cellulose and hemicellulose can be degraded and utilised. Prior degradation can be done via "steam-explosion", acid hydrolysis (e.g. pre-treatment with sulfuric acid) and enzymatic hydrolysis (pre-treatment or co-fermentation with cellulases).

See also[edit | edit source]

FA info icon.svgAngle down icon.svgPage data
Authors Rasmus
License CC-BY-SA-3.0
Language English (en)
Related 0 subpages, 0 pages link here
Impact 694 page views
Created June 3, 2012 by Rasmus
Modified May 21, 2023 by Irene Delgado
Cookies help us deliver our services. By using our services, you agree to our use of cookies.