Warning! You are not logged in. Log in or create an account to have your edits attributed to your username rather than your IP, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 26: Line 26:
Figure 3 shows the detailed structure of a GaInP (1.8 eV) / GaInAs (1.4 eV) / Ge (0.67 eV) triple-junction solar cell. In this design a wide band gap (transparent) window layer is used to lower a cell's series resistance. It does so by enhancing the lateral flow of photogenerated electrons trying to reach an electrical contact or '''tunnel junction''' (see Tunnel Junctions). A buffer layer is also used between the bottom and middle layers to reduce lattice mismatch effects (see Lattice Constant Matching).
Figure 3 shows the detailed structure of a GaInP (1.8 eV) / GaInAs (1.4 eV) / Ge (0.67 eV) triple-junction solar cell. In this design a wide band gap (transparent) window layer is used to lower a cell's series resistance. It does so by enhancing the lateral flow of photogenerated electrons trying to reach an electrical contact or '''tunnel junction''' (see Tunnel Junctions). A buffer layer is also used between the bottom and middle layers to reduce lattice mismatch effects (see Lattice Constant Matching).


[[File:MJcellj.png|center|thumb|Figure 3: Structure of triplet solar cell (Fetzer, 2004)]]
[[File:MJcellj.png|center|thumb|Figure 3: Structure of triplet solar cell]]


=== Fabrication ===
=== Fabrication ===
Warning! All contributions to Appropedia are released under the CC-BY-SA-4.0 license unless otherwise noted (see Appropedia:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here! You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted material without permission!
Cancel Editing help (opens in new window)
Cookies help us deliver our services. By using our services, you agree to our use of cookies.