Get our free book (in Spanish or English) on rainwater now - To Catch the Rain.

CCAT rocket stove

From Appropedia
Jump to navigation Jump to search
Engr305 Appropriate Technology page in progress
This page is a project in progress by students in Engr305 Appropriate Technology. Please do not make edits unless you are a member of the team working on this page, but feel free to make comments on the discussion page. Check back for the finished version on May 8, 2007.

It has been suggested that some or all of the content of this page should be merged into the topic page Improved cook stoves. You can discuss this issue on the talk page.
See Appropedia:Content types for more information.

Improved Fuel Stove or Rocket Stove is the final project for Appropriate Technology class at Humboldt State University. The project goal is to construct a demonstration rocket stove for the Campus Center for Appropriate Technology on campus at Humboldt State University. The rocket stove will serve as a example of improved fuel stove technology and development; students and public touring the center will learn about the design, function and need for improved fuel stoves around the world. The rocket stove will also enable the residents of the center to cook with traditional biomass, reducing their dependence on petroleum based forms of energy. It is important to note that rocket stoves are designed for populations around the world who still depend on biomass for there cooking fuel. The use of rocket stoves in developed nations is not necessary. Developed nations using modern cooking methods are not faced with health and environmental issues related with traditional cooking methods. The improved fuel stove programs was designed, built tested by Daniel Moyer and Tyler Jones.

Populations continue to increasingly rely on biomass for cooking fuel, thus hindering the next step toward modern cooking methods. Populations in developing nations want the same modern, self cleaning, convection, downdraft stove found in America suburbs. Modern cooking methods can be arguable considered more appropriate. Modern cooking methods are efficient at fuel conversion and produce less atmospheric particulates, however the dependence on petroleum hinders the appropriateness of modern cooking methods. So, should we give Africans dirty wood burning rocket stoves instead of modern cooking cooking ovens and stoves?



Improved cook stoves are an attempt to address the negative environmental and social effects of the three rock fire. Improved Stoves increase efficiency of fuel consumption and reduce the amount of pollution released into indoor cooking environments. Improved fuel stoves designs are constructed with metal housing and insulating materials enclosing the fire. Improved fuel stoves improve heat transfer and fuel combustion, resulting in a efficient clean burning wood stove. In order to understand why improved fuel stoves are necessary, one must first look at the unhealthy and unsustainable traditional cooking methods.

Traditional Three Rock Fire


The rocket stove has social and environmental benefits to the large population in the developing world that have no other alternative than burring biomass for their cooking and heating needs. Rural cultures around the world depend on the three rock fire for there cooking needs. Inefficient methods of cooking places the environment in jeopardy, over harvesting of fuel for cooking can causes damage to vegetation and wildlife. Understanding traditional cooking methods can help explain why improved fuel stoves are an important appropriate technology. "Most cooking fires are surrounded by three of more stones, bricks, mounds of mud of lumps of fireproof material – thus the common name of three rock fire" [1]


Three rock fires have benefits not found on improved stoves such as; space heating, protection from insects, and the flexibility to use a wide variety of fuels in different seasons. Domestic lighting is one of the important uses of three rock fires, a function that the improved stove cannot perform. "Three rock fires provide light, heat and a social focal point for family and friends."[1] A three rock fire producing lots of smoke in a riparian or wetland environment might have the added benefit of preventing insect’s bites. The open fire possesses important advantages compared to an improved stove. "It cost nothing and no special materials, tools or skills are needed to construct it".[1] If the other functions of the three rock fire are not replicated with its replacement then the improved stove is not being judged and evaluated fully. "If the fire is used to provide heat or light at times when cooking is not taking place, then its efficiency can hardly be judged only on the basis of how well it heats pots." [1]


A large population of people in developing nations depend on traditional three rock fires for cooking; this primitive form of cooking negatively impacts the health of people using the stove and the well being of the natural environment. Two billion people use biomass for cooking and heating worldwide. Traditional three rock fires are used inside the persons dwelling, usually located on a dirt floor. "Over the last 30 years awareness of the environmental and social costs of using traditional fuels and stoves has grown." [2] Traditional three rock fires pose major obstacles to the environmental, social health and sustainability of society. The most important concern with traditional three rock fires is indoor air quality. Biomass fuels release large amounts of air pollutants when burned on traditional three rock fires. These pollutants become concentrated in inadequately ventilated homes and dwellings. "Several recent studies have identified prolonged exposure to biomass smoke as a significant cause of human health problems." [3] Biomass burned on three rock fires produces harmful soot and ash that become concentrated when confined inside a dwelling, resulting in harmful indoor air conditions. "According to recent estimates by the World Health Organization, up to 1.6 million women and children die every year from breathing polluted air in their homes." [4] Respiratory and vision problems occur in mostly women and children because they spend significant time indoors tending to cooking fires. Another critique with traditional wood fires is the inefficiency in fuel consumption. Traditional wood fires are very efficient at turning wood into energy. However, traditional wood fires are inefficient at transferring the released energy into the cooking vessel. Most of the released energy in the wood is wasted heating the surrounding air rather than heating the cooking vessel. The inefficient transfer of energy requires the user to use more wood fuel, increasing the amount of wood harvested from the surrounding environment. The increased demand for wood can further deplete the already stressed local natural environment. The third critique of traditional wood fires is childhood burns. "Burns are quite common in homes using fire and can be fatal or horribly disfiguring." [2] Children can easily fall into the fire because traditional wood fires are located on the floor. Burns disfigure and scar their victim and the experience can be very painful for both the child and family.

Improved Fuel Stove


A rocket stove is a type of improved biomass stove. Improved stoves reduce the demand for biomass fuel and improve living conditions for populations who currently use three rock fires. The main justifications for improved stoves are economical, social, and environmental. Stove programs can produce economic benefits. The stove saves time and money for the users. In urban areas, were people purchase biomass fuel, the payback time for the cost of a improved stove is short, thus providing extra cash from purchasing less fuel. "In rural areas, more efficient stove can reduce the time spent collecting fuel for cooking, freeing time for child care and income-producing activities." [3] Improved stoves can help moderate the environmental externalities of over harvesting trees.

Indoor Air Quality

Indoor air quality is the main driving factor in the decimation programs around the developing third world. Soot and ash produced when cooking with traditional three rock fires creates unhealthy amounts of indoor air particulates, resulting in respiratory and breathing issues. Improved indoor air quality and fuel efficiency have social and health benefits, especially for women and children. In order to reduce indoor air pollution, improved stoves must improve combustion of the wood fuel. Improving combustion reduces the amount of smoke and harmful emissions produced during the burning process. "A hotter fire burns up more combustible gases and produces less smoke" [2] . The key to having efficient combustion is to burn wood at a high temperature. Several methods can be used to increases the temperature of the fire. Having a good air draft into the fire is essential to increasing combustion temperature. Insulation around the fire can help the fire to burn hotter. "Lift the burning sticks up off the ground so that air can scrape under the sticks and through the charcoal" [4] . The most important factor in improving combustion is metering the fuel. Metering the fuel allows only the burning portion of the wood to be heated. "Meter the sticks into the combustion chamber to make a hot, fierce, jumpy looking fire that does not make charcoal" [2] . Fully burned biomass fuel produces less smoke and harmful emissions reducing indoor air pollution.

Fuel Efficiency

Improved Fuel stoves can reduce the amount of wood fuel needed to cook. Improving the heat transfer efficiency of energy from the fire to the cooking vessel reduces the amount of energy wasted, thus reducing the amount of wood needed. In order to improve the fuel efficiency of rocket stoves you must improve the heat transfer from the fire to the cooking vessel. The crucial factor in improving stove efficiency is having the hot air and gas released from the fire, contact the cooking vessel in the largest possible surface area. This is accomplished through the use of a pot skirt that creates a narrow channel forcing hot air and gas to rub along the bottom and sides of the cooking vessel. Increasing heat transfer can also be accomplished through the use of wide pots. "Using a wide pot creates more surface are to increase the transfer of heat" [4] . Increasing the speed of the hot gases that rub against the pot can improve heat transfer. Improved stoves are insulated and lifted off of the floor preventing childhood burns.

Stove Programs


Improved stove programs face many political, social and economic obstacles that must be addressed if an improved stove program is going to succeed. The major obstacles to the success of improved stove programs in rural areas is freely available biomass resources leads people to continue to rely on biomass for cooking. Improved stove programs have failed in areas were fuel is not purchased or fuel is easy to collect. "Many stove programs have failed because the target group have no shortage of wood or do not perceive shortages and thus see no pressing reason to adopt improved stove" (Barnes 1994). Stove programs must be conducted in areas that have a need for improved stoves. "Programs must be targeted carefully to situations in which people pay high prices for fuel or walk long distances to collect fuel wood to other biomass materials" [3]. Ease of use is a major concern where stoves require fuel wood to be cut into small pieces. Stove users that have neither the time nor the tools to cut the wood into small sizes, may result in the improved stove going unused. "No matter how efficient or cheap the stove, individual households have proved reluctant to adopt it if it is difficult to install and maintain or less convenient and lass adaptable to local preferences than its traditional counterpart" [3]. The high price of the improved stoves can be a formidable barrier to their adoption. "Although in the long run improved fuel stoves save money, the initial cash outlay required may prevent poorer people from affording the stove" [3].

Ways to Succeed

Stove programs have a better chance of success in urban areas where people buy both the fuel and the stove. Programs in rural areas succeed where fuel wood has already been harvested and people are spending extended periods of time gathering fuel. Improved stoves that have a quick payback period generally are more likely to be adopted in poorer rural areas. "Programs have been most effective where households pay relatively high prices for wood fuels; in such cases, the improved stoves can pay for themselves in fuel savings very rapidly, even though they are usually more expensive to produce and buy than traditional stoves" [3]. Targeting specific areas where cooking fuel is expensive can ensure improved stoves to be quickly adopted and purchased. The evaluation of improved stoves is an important in understanding how and why improvements and changes in design should be implemented.

Indigenous Culture

The respect for indigenous culture is important in the improved stove design. Feedback and a two way interaction with local users should be designed in any improved stove program. "Stove dissemination programs are most effective when they allow for interaction and feedback between designers, producers, and users" [3]. Stoves need to be adapted to each region around the world. The different styles of cooking in various countries dictate different stove designs. "Stoves should be modified or redesigned to meet regional requirements" [3]. Improved stoves are most successful where local knowledge and customs are taken into account. "Households have been most receptive when the dissemination process takes full account of the capacities and the needs of local stove producers and consumers" [3]. Stove programs do best in areas where people have an unequivocal need to save fuel and the improved stoves can be produced cheaply by local industries or artisans. "Improved stoves are most popular when they are easily and locally manufactured and have clear advantages in fuel economy, durability, ease of use, and cleanliness" [3]. Populations utilizing improved stove realize the benefits and advantages to their health and local environment.



Materials used in the construction of the rocket stove main body are made from recycled metal barrles. A old lemon oil can was trimmed to the proper dimensions, becoming our pot skirt. The insulated combustion chamber is comprised of ceramic insulated bricks purchased at a local pottery supply store. The chamber is held together with eighteen gauge stainless steel metal plating fastened with 3/8 inch hardware. The hardware used to construct the rocket stove includes machine screws, nuts, washers and sheet metal screws; all hardware utilized was purchased from a local hardware store.


  • Insulation
  • Stock Pot 10"
  • Hardware

Construction Steps

  1. We built our square combustion chamber out of insulative bricks. The bricks were extensively shaped using a hack saw. Heat resistant putty was used as sealant.
Fig.1:Combustion chamber
  1. We built a case for the combustion chamber to sit in using sheet metal. The metal was cut out with tin snips and fastened with screws at the edges.
  2. We used a drill and tin snips to cut a square out of the barrel corresponding to the dimensions of the metal casing. The casing for the combustion chamber fits into the hole, protruding on both sides.
  3. The casing is firmly secured to a metal beam that stretches across the barrel. This beam is secured on both sides with L brackets.
  1. Vermiculite is poured into the barrel in order to insulate the combustion chamber. This insulation fills the space between the chamber and the barrel and is filled as high as the top of the chamber.
  2. At the top opening of the combustion chamber we constructed a metal shelf. This shelf is circular and perfectly fits inside of the barrel. It has a square cut in it corresponding to the top opening of the combustion chamber. This allows for gasses to pass through, but seals them off from the bottom half of the barrel. The shelf is secured firmly to the outside of the barrel with L brackets and screws.
  1. In the top half of the barrel, we constructed a skirt. This skirt surrounds the cooking pot, leaving a small gap on the bottom and the sides. The skirt was constructed out of a can. We used a grinder to cut a square opening in the bottom to channel the hot gasses. The top of the can was cut completely open. This skirt is fastened to the shelf with screws and washers. The washers provide a resting area for the pot, creating gap between the bottom of the skirt and the bottom of the pot.
  1. The pot is inserted into an opening in the top of the barrel. Here we have cut out a circle with the grinder and then carefully bent the metal down at a right angle using square pliers and a mallet This way the pot is extra sealed and the opening for it is not jagged or sharp.
  1. We cut a hole out of the upper side of the barrel and fastened a circular metal chimney over the hole using screws.
  2. To use our rocket stove, burn fuel inside the combustion chamber and set the pot inside the skirt.

Design Principles

  1. A well constructed rocket stove will allow for air to circulate. With this in mind, it is important to provide an even pathway for the air. The chimney, the combustion chamber and the skirt gap should all have the same cross-sectional area.
  2. Unless oxygen is being circulated, the fire will smother. When building the combustion chamber it is necessary to provide a shelf for the fuel. This way, fresh air will be pulled underneath the burning fuel.
  3. The chimney should be short, reaching just above the cookpot. This allows for hot gasses to flow more rapidly through the system.
  4. Heat will radiate from the combustion chamber. For improved efficiency, insulate around the chamber.


Testing is essential to rocket stove projects. Testing should happen throughout the entire life of a stove project. The evaluation of improved stoves helps determine if the model is marketable, whether production costs are as low as possible, and if improvements are needed. "Careful testing of stoves has resulted in a more accurate understanding of how to make a better stove. Without experimentation and testing, the development of a stove is based on conjecture" [2] . Technical advances in energy efficiency alone will not ensure success. Stove programs must be complemented by appropriate project design, implementation and proper institutional support. Without proper testing, stove programs will have unrealistic expectation of the efficiency of improved stoves. Stove programs can overestimate the efficiency of improved stoves when tested in a controlled lab setting. Improved stoves never do as well in real households. "The fuel savings that can be attained in a laboratory often have little relationship to savings possible under field conditions" [4] . Many stove programs in controlled lab settings achieved a 75% reduction in fuel consumption. After examination of early stove programs, fuel efficiency expectations of improved stoves has been substantially reduced. "Most people in the stove community now agree that a 50% decrease in fuel consumption should be considered a major achievement and that should be content with a savings of 25% or even less" [3]. Laboratory settings can be valuable with designing and initial testing of improved stoves; testing in field conditions can ensure the final product is built and designed correctly. Producing a stove design that adheres and conforms to local culture is vital in ensuring a successful stove program.

Types of Testing

The field water boil test will be used to evaluate the efficiency of the our improved fuel stove.


No results as yet. Testing to start soon.


Populations around the world are going to continue to use biomass fuel for the indefinite future. The use of improved stoves can help control the external costs to both the environment and human society. "It seems inevitable that an increasing amount of biomass fuel will be bought and burned in purchased stoves" [3]. Fuel savings may not be the driving factor in the adaptation of improved stoves. Improved stoves work because they make cooking quicker, safer, and cleaner. Improved stoves protect children from the dangers of burns from the open fire, reduce respiratory diseases, and burn clean and free of soot.

Lit Review

  1. 1.0 1.1 1.2 1.3 Foley, G., P. Moss, and L. Timberlake. 1984. Stoves and Trees: how much wood would a woodstove save if a woodstove could save wood?. London and Washington D.C.: Earthscan.
    This publication addresses the very political nature of improved stove programs. The book informs the reader of: domestic fuels, current and past stove programs, and why improved stove programs should be used. The main advantage of this publication is the focus on stove programs success and failures and the books ability to refer to African societies past experiences with improved stove design. The books main disadvantage is the lack of any design or construction ideas for rocket stove design. Sections are included that refer to measuring efficiency and testing performance.
  2. 2.0 2.1 2.2 2.3 2.4 Bryden, Mark., Dean Still., Damon Ogle., and Nordica MacCarty. 2001. Designing Improved Wood Burning Heating Stoves. Creswell, OR: Aprovecho Research Center.
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 Barnes, D.F., K. Openshaw., K.R. Smith., and R.V. Plas. What Makes People Cook with Improved Biomass Stoves? World Bank Technical Paper No. 242. Energy Series. Washington, D.C.: World Bank.
    This publication from the World Bank gives a comparison of stove programs throughout the third world. The paper gives an overview of the general lessons from stove programs: consumer preferences, stove design, role of government and donor agencies and the role of subsidies. The paper presents the role of politics in improved stove programs; considerable information regarding the emergence of government based stove programs is included in the paper. Advantages of included the stove market and consumer preferences section. This topic was not specificity addressed in any other publication. The main disadvantage of this publication is the role to the publisher. The World Bank has provided this paper with good intentions that must be questioned.
  4. 4.0 4.1 4.2 4.3 Witt, Mark., Kristina Weyer., David Manning. 2006. Designing a Clean Burning, High Efficiency, Dung Burning Stove: Lessons in cooking with cow patties. Creswell, OR: Aprovecho Research Center.