Get our free book (in Spanish or English) on rainwater now - To Catch the Rain.

Difference between revisions of "PV-CHP"

From Appropedia
Jump to: navigation, search
(Dispatch strategy and model for hybrid photovoltaic and trigeneration power systems)
(Dispatch Strategy:)
Line 73: Line 73:
===='''Dispatch Strategy:'''====
===='''Dispatch Strategy:'''====
*This strategy is used to control the system in order to meet the electric and thermal load requirements.

Revision as of 22:31, 24 January 2015

Improved performance of hybrid photovoltaic-trigeneration systems over photovoltaic-cogen systems including effects of battery storage

This paper presents the hybridization of CHP(Combined Heat and Power)with PV(Photovoltaic)and CCHP(Combined Cooling Heat and Power)with PV. It even explains the several advantages of using CHP+PV hybrid systems and CCHP+PV hybrid systems over conventional systems. Moreover, PV-Cogen and PV-trigen are found to be more effective at reducing emissions compared to conventional systems.


Review of PV(Photovoltaic)

-In PV technology solar energy is directly converted to electricity. The efficiency is only about 6-20%.

-The PV has irregularities due to local weather conditions. Thus, PV technology is not consistent throughout the year. So, PV technology is combined with CHP unit.

Review of CHP(Combined Heat and Power)

-The CHP unit uses fuel like natural gas, bio-gas etc to generate electricity.

-The co-generation unit also produces thermal energy which is harnessed by a heat exchanger and utilized

Review of Battery Energy

-Battery is a storage device.

-Whenever excess electricity is generated by the hybrid system, it is stored in the battery and it is utilized during the time when the CHP and PV unit fails to meet the requirement.

Hybrid System(PV+CHP+battery)

-Electricity generated by the PV and Cogeneration unit is used to meet electric requirements. The waste heat is harnessed by heat exchanger to provide hot water and space heating.

-Whenever, excess electricity is generated it is stored in the batteries which is used to supply electricity when PV+CHP unit fails to meet requirements.


  • GHG(Green House Gas) emission reduction.
  • High efficiency as most of the waste heat is utilized for heating water, space heating etc.
  • Improved performance.
  • Higher normalized power indices.

Hybrid System(PV+CCHP+battery)

-In CHP there is still some amount of waste heat. So, in order to overcome this limitation PV-CCHP hybrid system are used.

-In CCHP, the remaining waste heat from the CHP is utilized by the system for air-conditioning(space cooling).


  • Substantial GHG emission reduction.
  • Very high efficiency(higher than PV+CHP hybrid system)
  • Improved performance than CHP.
  • Higher normalized power indices than CHP.

Dispatch strategy and model for hybrid photovoltaic and trigeneration power systems

This paper purposes the dispatch strategy for hybrid system PV+CCHP that accounts for electric, space cooling and space heating. The CCHP(Combined Cooling and Heat Power) system is used to reduce the waste heat produced from CHP system. This has resulted in improving the performance by 50% over PV-CHP unit. Due to intermittency of PV technology CHP unit is combined with PV. To overcome the the limitations of the CHP unit, PV+CCHP hybrid system is used.


-Electricity is generated by both PV and CHP unit but in order to improve the performance storage devices for electricity and thermal loads are connected with PV+CHP hybrid units.

-Inverter is used to convert DC output from PV and battery to AC outputs which are compatible with loads.

-Excess AC output produced from CHP is stored in the battery.

Parallel configuration:

In this inverter(it is used to convert DC output from PV and battery to AC outputs) and CHP unit is connected in parallel. The advantage of using parallel configuration are reduction of capacity of inverter and CHP unit, better supply-demand correlation, maximized CHP fuel efficiency, and minimized CHP maintenance costs.

Series configuration:

Series configuration is easy to implement, but has several flaws like lower overall system efficiencies (due to inverter and battery losses), larger inverter size, and a limited control of the CHP unit.

Dispatch Strategy:

  • This strategy is used to control the system in order to meet the electric and thermal load requirements.