No edit summary
No edit summary
Line 4: Line 4:
   If No, then determine why the part should be created.
   If No, then determine why the part should be created.
   If yes,  
   If yes,  
     What is the  
     What is the [http://www.ideo.com/about/ desirability]?


2) Is there an existing offering/part made by traditional manufacturing processes?
2) Is there an existing offering/part made by traditional manufacturing processes?
Line 32: Line 32:




6) Conduct Finite Element Analysis ([http://en.wikipedia.org/wiki/Finite_element_method FEA]).  
7) Conduct Finite Element Analysis ([http://en.wikipedia.org/wiki/Finite_element_method FEA]).  
   Select from [http://en.wikipedia.org/wiki/List_of_finite_element_software_packages List of FEA Software Packages]
   Select from [http://en.wikipedia.org/wiki/List_of_finite_element_software_packages List of FEA Software Packages]
   Review basics for [[Finite element analysis: MOST]]
   Review basics for [[Finite element analysis: MOST]]
Line 39: Line 39:
   Insert [http://en.wikipedia.org/wiki/Young%27s_modulus Young's Modulus] and [http://en.wikipedia.org/wiki/Poisson%27s_ratio Poisson's Ratio] for material used.
   Insert [http://en.wikipedia.org/wiki/Young%27s_modulus Young's Modulus] and [http://en.wikipedia.org/wiki/Poisson%27s_ratio Poisson's Ratio] for material used.


7) Determine if part should be 3D printed based on ([http://en.wikipedia.org/wiki/Finite_element_method FEA]).
8) Determine if part should be 3D printed based on ([http://en.wikipedia.org/wiki/Finite_element_method FEA]).
    
    
   Does the part fail as anticipated?
   Does the part fail as anticipated?
Line 45: Line 45:
   Should the part be redesigned before printing?
   Should the part be redesigned before printing?


8) Select the most appropriate [http://www.matterhackers.com/3d-printer-filament-compare 3D printing material].  
9) Select the most appropriate [http://www.matterhackers.com/3d-printer-filament-compare 3D printing material].  
   [http://en.wikipedia.org/wiki/Polylactic_acid PLA], [http://en.wikipedia.org/wiki/Nylon Nylon], and [http://en.wikipedia.org/wiki/Polycarbonate Polycarbonate] are recommended.  
   [http://en.wikipedia.org/wiki/Polylactic_acid PLA], [http://en.wikipedia.org/wiki/Nylon Nylon], and [http://en.wikipedia.org/wiki/Polycarbonate Polycarbonate] are recommended.  
   [http://www.appropedia.org/Mechanical_Properties_of_Components_Fabricated_with_Open-Source_3-D_Printers_Under_Realistic_Environmental_Conditions Mechanical properties] of components printed with [http://en.wikipedia.org/wiki/Polylactic_acid PLA] and [http://en.wikipedia.org/wiki/Acrylonitrile_butadiene_styrene ABS].
   [http://www.appropedia.org/Mechanical_Properties_of_Components_Fabricated_with_Open-Source_3-D_Printers_Under_Realistic_Environmental_Conditions Mechanical properties] of components printed with [http://en.wikipedia.org/wiki/Polylactic_acid PLA] and [http://en.wikipedia.org/wiki/Acrylonitrile_butadiene_styrene ABS].
  (Make table with parameters and references for PLA, Nylon, Polycarbonate).
  (Make table with parameters and references for PLA, Nylon, Polycarbonate).


9) Import CAD file into [http://edutechwiki.unige.ch/en/Slicers_and_user_interfaces_for_3D_printers slicing software].
10) Import CAD file into [http://edutechwiki.unige.ch/en/Slicers_and_user_interfaces_for_3D_printers slicing software].
   [http://software.ultimaker.com/ Cura] is the most commonly used slicing software.     
   [http://software.ultimaker.com/ Cura] is the most commonly used slicing software.     
   [http://slic3r.org/ slic3r] is an alternative.  [https://github.com/alexrj/Slic3r/wiki/Documentation Useful documentation for getting started with Slic3r].  
   [http://slic3r.org/ slic3r] is an alternative.  [https://github.com/alexrj/Slic3r/wiki/Documentation Useful documentation for getting started with Slic3r].  
   [[RepRap printing protocol: MOST]] contains information on preparing your file for printing.
   [[RepRap printing protocol: MOST]] contains information on preparing your file for printing.


10) Determine optimal printing build parameters in slicing software with regard to necessary properties, standards and loads.
11) Determine optimal printing build parameters in slicing software with regard to necessary properties, standards and loads.
        
        
(e.g. orientation, fill density, fill pattern, layer thickness, bead width, deposition temperature, deposition speed raster angle, etc.)
(e.g. orientation, fill density, fill pattern, layer thickness, bead width, deposition temperature, deposition speed raster angle, etc.)
Line 65: Line 65:
     [http://manual.slic3r.org/simple-mode/simple-mode Silc3r Print Settings] contains information on settings for Layer Height, Perimeters, Fill Density, Fill Pattern, Support Material, Speed, Brim, Sequential Printing, Filament Settings, & Printer Settings
     [http://manual.slic3r.org/simple-mode/simple-mode Silc3r Print Settings] contains information on settings for Layer Height, Perimeters, Fill Density, Fill Pattern, Support Material, Speed, Brim, Sequential Printing, Filament Settings, & Printer Settings


11) Export [http://en.wikipedia.org/wiki/G-code G-Code] from slicing software and import [http://en.wikipedia.org/wiki/G-code G-Code] file into 3D printing software.
12) Export [http://en.wikipedia.org/wiki/G-code G-Code] from slicing software and import [http://en.wikipedia.org/wiki/G-code G-Code] file into 3D printing software.
     [http://en.wikipedia.org/wiki/G-code G-Code] is the file type (.gcode) needed to print.
     [http://en.wikipedia.org/wiki/G-code G-Code] is the file type (.gcode) needed to print.


12) Select printing software.
13) Select printing software.
     [http://reprap.org/wiki/Repetier-Host Repetier-Host] and [http://reprap.org/wiki/Printrun Pronterface] are recommended.
     [http://reprap.org/wiki/Repetier-Host Repetier-Host] and [http://reprap.org/wiki/Printrun Pronterface] are recommended.


Line 74: Line 74:
     [http://www.plasticscribbler.com/tutorial/getting-started/item/21-getting-started-with-pronterface#.VUBImyEVgqw Pronterface Basics]
     [http://www.plasticscribbler.com/tutorial/getting-started/item/21-getting-started-with-pronterface#.VUBImyEVgqw Pronterface Basics]
      
      
13) Ensure printer is [http://reprap.org/wiki/Calibration calibrated].
14) Ensure printer is [http://reprap.org/wiki/Calibration calibrated].
     [http://reprap.org/wiki/Calibration Calibration] will depend on the type of 3D printer used.  
     [http://reprap.org/wiki/Calibration Calibration] will depend on the type of 3D printer used.  
     [https://www.youtube.com/watch?v=c3QD4-nFQL4 Calibration Tutorial]
     [https://www.youtube.com/watch?v=c3QD4-nFQL4 Calibration Tutorial]
     [[MOST Delta Auto Bed Leveling]]
     [[MOST Delta Auto Bed Leveling]]


14) Print part.
15) Print part.
     [[RepRap printing protocol: MOST]]
     [[RepRap printing protocol: MOST]]
     [[3D_Printing_Basics:MOST]]
     [[3D_Printing_Basics:MOST]]
Line 85: Line 85:
     [https://innovationstation.utexas.edu/tip-design Tips for Designing 3D Printed Parts]
     [https://innovationstation.utexas.edu/tip-design Tips for Designing 3D Printed Parts]


14) Test printed part to failure.
16) Test printed part to failure.
     Determine appropriate [http://en.wikipedia.org/wiki/Failure_analysis failure analysis] method (e.g. [http://en.wikipedia.org/wiki/Tensile_testing Tensile], [http://www.instron.com/en-us/our-company/library/test-types/compression-test?region=North%20America compression test], [http://www.instron.com/en-us/our-company/library/glossary/t/torsion-test Torsion Test], or [http://en.wikipedia.org/wiki/Rockwell_scale Rockwell Hardness].
     Determine appropriate [http://en.wikipedia.org/wiki/Failure_analysis failure analysis] method (e.g. [http://en.wikipedia.org/wiki/Tensile_testing Tensile], [http://www.instron.com/en-us/our-company/library/test-types/compression-test?region=North%20America compression test], [http://www.instron.com/en-us/our-company/library/glossary/t/torsion-test Torsion Test], or [http://en.wikipedia.org/wiki/Rockwell_scale Rockwell Hardness].



Revision as of 14:29, 29 April 2015

What is 3-D printing?

1) Is there an existing demand for the part or product?

  If No, then determine why the part should be created.
  If yes, 
    What is the desirability? 

2) Is there an existing offering/part made by traditional manufacturing processes?

  If No, then determine why there is not an existing offering.
  If Yes, 
     What are the benefits of 3D printing the part? (e.g. geometry complexity, customization, density, rapid prototyping, reduce lead times, or unique material)

3) Is it feasible to 3D print part?

  Is the the volume of part less than the build envelope? 
  Maximum temperature range for part less than maximum temperature for printing material?

4) Determine and quantify necessary mechanical properties, standards, and loads for part.

  Determine applicable mechanical properties (e.g. Tensile Strength, Compression Strength, Flexural Strength, Impact Strength, Fatigue Limit, Wear Resistance, and Stiffness). 
  Reference industry standards for the part (e.g. ASTM International, ANSI, or ASME).

5) Prioritize necessary mechanical properties, standards, and loads for part.

  Based on requirements for part, prioritize Tensile Strength, Compression Strength, Flexural Strength, Impact Strength, Fatigue Limit, Wear Resistance, and Stiffness.
  Use prioritized list of mechanical properties to influence design considerations and FEA simulation.

6) Model existing part or prototype.

  Use Comparison of CAD Modeling  to determine best CAD Modeling software.
  OpenSCAD, FeeCAD, and Blender are the most commonly used Open source engineering software packages.
  Save an IGES file for Finite Element Analysis.
  Save a STL file for the slicing software.


7) Conduct Finite Element Analysis (FEA).

  Select from List of FEA Software Packages
  Review basics for Finite element analysis: MOST
  ANSYS and Abaqus are two commonly used FEA software packages.
  Insert Young's Modulus and Poisson's Ratio for material used.

8) Determine if part should be 3D printed based on (FEA).

  Does the part fail as anticipated?
  Does the upper-limit of failure meet the required mechanical properties, standards, and loads?
  Should the part be redesigned before printing?

9) Select the most appropriate 3D printing material.

  PLA, Nylon, and Polycarbonate are recommended. 
  Mechanical properties of components printed with PLA and ABS.
(Make table with parameters and references for PLA, Nylon, Polycarbonate).

10) Import CAD file into slicing software.

  Cura is the most commonly used slicing software.     
  slic3r is an alternative.  Useful documentation for getting started with Slic3r. 
  RepRap printing protocol: MOST contains information on preparing your file for printing.

11) Determine optimal printing build parameters in slicing software with regard to necessary properties, standards and loads.

(e.g. orientation, fill density, fill pattern, layer thickness, bead width, deposition temperature, deposition speed raster angle, etc.)

    How Does Build Orientation Affect a 3D Printed Part?
    Cura - Fill Density 
   
    Cura User Manual contains information on settings for layer height, shell thickness, enable retraction, bottom/top thickness, fill density, print spreed, print temperature, support type, platform adhesion type, filament diameter, and filament flow].
    Silc3r Print Settings contains information on settings for Layer Height, Perimeters, Fill Density, Fill Pattern, Support Material, Speed, Brim, Sequential Printing, Filament Settings, & Printer Settings

12) Export G-Code from slicing software and import G-Code file into 3D printing software.

   G-Code is the file type (.gcode) needed to print.

13) Select printing software.

   Repetier-Host and Pronterface are recommended.
   Repetier-Host Documentation
   Pronterface Basics
   

14) Ensure printer is calibrated.

   Calibration will depend on the type of 3D printer used. 
   Calibration Tutorial
   MOST Delta Auto Bed Leveling

15) Print part.

   RepRap printing protocol: MOST
   3D_Printing_Basics:MOST
   MOST_Reprap_Printing_Lessons
   Tips for Designing 3D Printed Parts

16) Test printed part to failure.

   Determine appropriate failure analysis method (e.g. Tensile, compression test, Torsion Test, or Rockwell Hardness.

(Describe testing process. Describe basic tensile test, compression test)

   Tensile test protocol: MOST

15) Does part fail as expected in FEA simulation?

   If No, reassess printing build parameters.
   If Yes, continue to next step.

16) Does part meet necessary mechanical properties, standards, and loads for part?

   If No, reassess CAD design and printing parameters.
   If Yes, compare 3D printed part to existing parts on cost, mechanical properties, etc.

17) Quantify and qualify why 3D-Printed product is better than existing offerings.

18) Cost Analysis

   (Compare costs of 3D-printed part to available offerings)
   The equation below can be used to determine the cost of printing a part:
      (Op) = (E)(Ce) + 1000(mf)(Cf) [1]
      
      Op: Operating costs for the RepRap-produced products
      E:  Energy use (kW-hr)
      Ce: Cost of filament (US$/kg)
      mf: mass consumed (g)

19) Continue iterative design process to optimize part for end user.


See also

  • [[]]
  • [[]]
  • [[]]

External links

  • []

References

Other references: Template:Stub

[[Category:]] [[Category:]]

Cookies help us deliver our services. By using our services, you agree to our use of cookies.