(Created page with "{{MOST}} {{Lit}} ==Background== This page is dedicated to the literature review of 3D printable conductive filaments. == Literature ==")
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:


==Background==
==Background==
This page is dedicated to the literature review of 3D printable conductive filaments.
This page is dedicated to the literature review of anisotropic FFF material properties.


== Literature ==
== Literature ==
===[http://www.emeraldinsight.com/doi/pdfplus/10.1108/13552540210441166 Anisotropic material properties of fused deposition modeling ABS<ref> Ahn, Sung-Hoon, Michael Montero, Dan Odell, Shad Roundy, and Paul K. Wright. "Anisotropic material properties of fused deposition modeling ABS." Rapid prototyping journal 8, no. 4 (2002): 248-257.
Harvard
</ref>]===
'''Abstract:'''
Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of ABS plastic. To predict the mechanical behavior of FDM parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on anisotropic material properties. This paper characterizes the properties of ABS parts fabricated by the FDM 1650. Using a Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths and compressive strengths of directionally fabricated specimens were measured and compared with injection molded FDM ABS P400 material. For the FDM parts made with a 0.003 inch overlap between roads, the typical tensile strength ranged between 65 and 72 percent of the strength of injection molded ABS P400. The compressive strength ranged from 80 to 90 percent of the injection molded FDM ABS. Several build rules for designing FDM parts were formulated based on experimental results.
'''Keywords:''' N/A
'''Summary:''' In Progress...
===[http://www.sciencedirect.com/science/article/pii/S0924013606011162 Measurement of anisotropic compressive strength of rapid prototyping parts<ref> Lee, C. S., S. G. Kim, H. J. Kim, and S. H. Ahn. "Measurement of anisotropic compressive strength of rapid prototyping parts." Journal of materials processing technology 187 (2007): 627-630.</ref>]===
'''Abstract:'''
Rapid prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Fused deposition modeling (FDM) and 3D printer are commercial RP processes while nano composite deposition system (NCDS) is an RP testbed system that uses nano composites materials as the part material. To predict the mechanical behavior of parts made by RP, measurement of the material properties of the RP material is important. Each process was characterizes by process parameters such as raster orientation, air gap, bead width, color, and model temperature for FDM. 3D printer and NCDS had different process parameters. Specimens to measure compressive strengths of the three RP processes were fabricated, and most of them showed anisotropic compressive properties.
'''Keywords:''' Rapid prototyping; Anisotropy; Fused deposition modeling; 3D printer system; Nano composite deposition system; Compressive strength
'''Summary:''' In Progress...

Revision as of 21:53, 22 February 2017

Background

This page is dedicated to the literature review of anisotropic FFF material properties.

Literature

Anisotropic material properties of fused deposition modeling ABS[1]

Abstract: Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of ABS plastic. To predict the mechanical behavior of FDM parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on anisotropic material properties. This paper characterizes the properties of ABS parts fabricated by the FDM 1650. Using a Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths and compressive strengths of directionally fabricated specimens were measured and compared with injection molded FDM ABS P400 material. For the FDM parts made with a 0.003 inch overlap between roads, the typical tensile strength ranged between 65 and 72 percent of the strength of injection molded ABS P400. The compressive strength ranged from 80 to 90 percent of the injection molded FDM ABS. Several build rules for designing FDM parts were formulated based on experimental results.

Keywords: N/A

Summary: In Progress...

Measurement of anisotropic compressive strength of rapid prototyping parts[2]

Abstract: Rapid prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Fused deposition modeling (FDM) and 3D printer are commercial RP processes while nano composite deposition system (NCDS) is an RP testbed system that uses nano composites materials as the part material. To predict the mechanical behavior of parts made by RP, measurement of the material properties of the RP material is important. Each process was characterizes by process parameters such as raster orientation, air gap, bead width, color, and model temperature for FDM. 3D printer and NCDS had different process parameters. Specimens to measure compressive strengths of the three RP processes were fabricated, and most of them showed anisotropic compressive properties.

Keywords: Rapid prototyping; Anisotropy; Fused deposition modeling; 3D printer system; Nano composite deposition system; Compressive strength

Summary: In Progress...

  1. Ahn, Sung-Hoon, Michael Montero, Dan Odell, Shad Roundy, and Paul K. Wright. "Anisotropic material properties of fused deposition modeling ABS." Rapid prototyping journal 8, no. 4 (2002): 248-257. Harvard
  2. Lee, C. S., S. G. Kim, H. J. Kim, and S. H. Ahn. "Measurement of anisotropic compressive strength of rapid prototyping parts." Journal of materials processing technology 187 (2007): 627-630.
Cookies help us deliver our services. By using our services, you agree to our use of cookies.