Quick Introduction to OpenSCAD

Joshua M. Pearce

Department of Materials Science & Engineering and Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI, USA

OpenSCAD The Programmers Solid 3D CAD Modeller

Primitive Objects

cube([a,b,c], center=true); sphere(a, \$fn=c); //\$fn is the resolution cylinder(h = c, r1 = b, r2 = a, center = true);

MehiganTeeh

Union Combining Primitives

"Try before you Buy"=% union(){ %cube([a,b,c], center=true); sphere(a, \$fn=c);

Difference

difference(){
cube([a,b,c], center=true);
sphere(a, \$fn=c);

Hull

hull(){
cube([a,b,c], center=true);
sphere(a, \$fn=c);

Moving Stuff Around

union(){
cube([a,b,c], center=true);
translate([0,0,b])sphere(a, \$fn=c);
}

Modules

module example(){
union(){
cube([a,b,c], center=true);
translate([0,0,b])sphere(a,
 \$fn=c);

Manipulate Your Module

rotate([45,0,0])example();

hull() {
example();

Loops

```
for (i = [1:12])
  assign (angle = i*30)
     rotate(angle, [1,0,0])
 example();
```


Putting it All Together to Make Something Useful

Shelling corn is a chore done by hand in much of the rural developing world. Yet there are handy corn shellers that can save people hours of labor. DIY shellers are a big chore to make...so you can print one.

The finished, cement-filled corn sheller is on the right. A commercial aluminum corn sheller is on the left. The bottom sheller that was cut from a PVC pipe cap. It did not perform as well as the can.

Parametric – Design ALL of the Products at Once

Lay out variables with comments to input to Customzier

```
//Open-source parametric hand corn sheller
// height of corn sheller
```

h=55;

```
// radius of top of corn sheller
rt=35; //[50:130]
```

rb=0.85*rt; //radius of bottom of corn sheller

```
//number of digits
d=6;
```

```
// digit radius
r=1.5;
```

```
// extra length of digit
l=1;
```

```
// thickness of sheller
t=3;
```


Michigan Technological University

Open Sustainability Technology

Research Group

Using Modules

Parametric Corn Sheller

Thingiverse Customizer

Customizable corn sheller

by jpearce

H height of corn sheller	
65	
Rt radius of top of corn sheller 50	
number of digits	
4	
R digit radius	
2.5	
L extra length of digit	
-4	
thickness of sheller	

Anyone can make a corn sheller perfect for them with no coding.

Cheat Sheet

Syntax

var = value: nodule name(_) { _ } name(); function name(_) = _ name(): include <...scad> use <....scad>

20

circle(radius) square(size,center) square([width,height],center) polygon([points]) polygon([points],[paths])

3D

sphere(radius) cube(size) cube([width,height,depth]) cylinder(h,r,center) cylinder(h.r1,r2,center) polyhedron(points, triangles, convexity)

Transformations	Mathematical
<pre>translate([x,y,z])</pre>	abs
<pre>rotate([x,y,z])</pre>	sign
<pre>scale([x,y,z])</pre>	acos
mirror([x,y,z])	asin
nultmatrix(n)	atan
color("colorname")	atan2
color([r, g, b, a])	sin
hull()	COS
minkowski()	floor
	round
Boolean operations	ceil
union()	ln
difference()	len
intersection()	log
	lookup
Hadifian Characters	min
Mooti ter characters	max
 disable 	DOM
! show only	sqrt
# highlight	exp
% transparent	rands

http://www.openscad.org/documentation.html

Other echo(_) str(_) for (1 = [start:end]) { _ } for (i = [start:step:end]) { _ } for (i = [____]) { _ } intersection_for(i = [start:end]) { _ } intersection_for(i = [start:step:end]) { _ } intersection_for(i = [-,-,-]) { - } if $(-) \{-\}$ assign (_) { _ } search(_) import("...stl") linear_extrude(height,center,convexity,twist,slices) rotate_extrude(convexity) surface(file = "...dat",center,convexity) projection(cut) render(convexity)

Special variables

\$fa minimum angle Sfs minimum size \$fn number of fragments St animation step

Thank you!

More information

- http://www.openscad.org/
- http://en.wikibooks.org/wiki/OpenSCAD_User_Manual
- http://www.appropedia.org/MOST
- http://reprap.org/
- pearce@mtu.edu

