Power P	lant Eug	Manad	omont					
FOWEI F	iant rue	i manay	ement					
Part 1								
Fuel	Fraction	Sulfur (ppm)	PM(kg/T)	Pounds of Steam		W/out Scrubbers		
Coal 1	0.05/9/10128	1100	1./	24000			Objective Cell	
Coal 2	0.5507246362	3500	3.2	36000			Variable Cells	
Coal 3	0.3913043509	1300	2.4	28000			Constraint Cells	
						W/Scrubbers		
Constraints	Used	Max		Total Steam			Objective	Cell
Fraction	1	1		32173.9130385132			Variable (Cells
Sulfur (ppm)	2499.9999971	2500					Constrain	ıt Cells
PM(kg/T)	2.8	2.8						
-								
Part 2								
Fuel	Fraction	Sulfur (ppm)	PM(ka/T)	Pounds of Steam	\$/T			
Coal 1	0	1100	1 7	24000	95			-
Coal 2	0 8295454545	3500	3.2	36000	83			
Coal 3	0.0200404045	1300	2.4	28000	01			
	0.1704343433	1300	2.7	28000	51			
	¢							
¢ (\$							
\$ W/OUT SCRUbbers	84.363636364			T . 1 C				
				Total Steam				
\$ w/scrubbers	85.863636364			34636.3636363636				
Fraction	1	1						
Sulfur (ppm)	2500	2500						
PM(kg/T)	2.4509090909	2.8						

iective	Cell	
riable Cells		
nstraint	t Cells	
no ci ann		
ioctivo	Coll	
jective riable C		
nstrain	t Cells	
		Part 1 of this excel sheet uses optimization modeling to find the ideal fractions of 3 different types of coal to maximize profit, while staying in compliance with pollution constraints.
		Part 2 uses optimization modeling to analyze whether or not it would be worth it to invest in scrubbers that would reduce pollutants by 20% for an extra \$1.50 per ton of coal. An analysis of the results determines that it is cost effective to instal the scrubbers.